Articles repérés par Hervé Le Crosnier

Je prend ici des notes sur mes lectures. Les citations proviennent des articles cités.

  • How classroom technology is holding students back - MIT Technology Review

    The school that Kevin and his classmates attend, located in a poor neighborhood in Washington, DC, prides itself on its “one-to-one” policy—the increasingly popular practice of giving each child a digital device, in this case an iPad. “As technology continues to transform and improve our world,” the school’s website says, “we believe low-income students should not be left behind.”

    Schools across the country have jumped on the education technology bandwagon in recent years, with the encouragement of technophile philanthropists like Bill Gates and Mark Zuckerberg. As older education reform strategies like school choice and attempts to improve teacher quality have failed to bear fruit, educators have pinned their hopes on the idea that instructional software and online tutorials and games can help narrow the massive test-score gap between students at the top and bottom of the socioeconomic scale. A recent Gallup report found that 89% of students in the United States (from third to 12th grade) say they use digital learning tools in school at least a few days a week.

    Gallup also found near-universal enthusiasm for technology on the part of educators. Among administrators and principals, 96% fully or somewhat support “the increased use of digital learning tools in their school,” with almost as much support (85%) coming from teachers. But it’s not clear this fervor is based in evidence. When asked if “there is a lot of information available about the effectiveness” of the digital tools they used, only 18% of administrators said yes, along with about a quarter of teachers and principals. Another quarter of teachers said they had little or no information.

    In fact, the evidence is equivocal at best. Some studies have found positive effects, at least from moderate amounts of computer use, especially in math. But much of the data shows a negative impact at a range of grade levels. A study of millions of high school students in the 36 member countries of the Organisation for Economic Co-operation and Development (OECD) found that those who used computers heavily at school “do a lot worse in most learning outcomes, even after accounting for social background and student demographics.” According to other studies, college students in the US who used laptops or digital devices in their classes did worse on exams. Eighth graders who took Algebra I online did much worse than those who took the course in person. And fourth graders who used tablets in all or almost all their classes had, on average, reading scores 14 points lower than those who never used them—a differential equivalent to an entire grade level. In some states, the gap was significantly larger.

    A 2019 report from the National Education Policy Center at the University of Colorado on personalized learning—a loosely defined term that is largely synonymous with education technology—issued a sweeping condemnation. It found “questionable educational assumptions embedded in influential programs, self-interested advocacy by the technology industry, serious threats to student privacy, and a lack of research support.”

    Judging from the evidence, the most vulnerable students can be harmed the most by a heavy dose of technology—or, at best, not helped. The OECD study found that “technology is of little help in bridging the skills divide between advantaged and disadvantaged students.” In the United States, the test score gap between students who use technology frequently and those who don’t is largest among students from low-income families. A similar effect has been found for “flipped” courses, which have students watch lectures at home via technology and use class time for discussion and problem-solving. A flipped college math class resulted in short-term gains for white students, male students, and those who were already strong in math. Others saw no benefit, with the result that performance gaps became wider.

    Why are these devices so unhelpful for learning? Various explanations have been offered. When students read text from a screen, it’s been shown, they absorb less information than when they read it on paper. Another frequently cited culprit is the distraction the devices afford—whether it’s a college student checking Instagram or a first grader like Kevin drawing bright pink lines with his finger. But there are deeper reasons.

    One is motivation. If Kevin had been asked to combine 8 and 3 by a teacher rather than an iPad, there’s a greater chance he would have been interested in trying to do it.

    In addition to sapping motivation, technology can drain a classroom of the communal aspect of learning. The vision of some ed tech advocates is that each child should sit in front of a screen that delivers lessons tailored to individual ability levels and interests, often on subjects chosen by the students themselves. But a vital part of education is different kids bouncing their ideas off each other.

    But even if technology could be calibrated to meet students where they truly are—or to foster communal learning—there’s another fundamental problem. Technology is primarily used as a delivery system. Maybe it can deliver instruction better than a human being in some circumstances. But if the material it’s delivering is flawed or inadequate, or presented in an illogical order, it won’t provide much benefit.

    The way Berger puts this is that for most things we want kids to learn, we don’t have a “map” that can be used to create software. By that he means, he told me, that in only a few areas is there a clearly defined set of concepts and a cognitively determined sequence in which they should be learned. In math, he said, “there’s a developmental stage in which brains are ready to think about part/whole, and if you try to teach fractions before that has happened, that doesn’t work.” Foundational reading skills are similar: first kids need to learn to match letters to sounds, and then they can learn how to blend those sounds together in sounding out a word. For pretty much everything else, Berger says, we really don’t know what should be taught or in what order.

    But as cognitive scientists have long known, the most important factor in reading comprehension isn’t generally applicable skill; it’s how much background knowledge and vocabulary the reader has relating to the topic. In a study done in the late 1980s, researchers divided seventh and eighth graders into two groups, depending on how well they had scored on a standardized reading comprehension test and how much they knew about baseball. Then they gave them all a passage about a baseball game. When the researchers tested the kids’ comprehension, they found that those who knew a lot about baseball all did well, regardless of how they’d scored on the reading test—and the “poor readers” who knew a lot about baseball did significantly better than the “good readers” who didn’t. That study, which has been replicated in a number of other contexts, provides compelling evidence that knowledge of the topic is more important to comprehension than “skills.”

    Educators and reformers aiming to advance educational equity also need to consider the mounting evidence of technology’s flaws. Much attention has been focused on the so-called digital divide—the relative lack of access that lower-income Americans have to technology and the internet. That’s legitimate: Kevin and students like him need to learn how to use computers to access information online and, more generally, to navigate the modern world. But let’s not create a digital divide of the opposite kind by outsourcing their education to devices that purport to build “skills” while their peers in richer neighborhoods enjoy the benefits of being taught by human beings.

    #Eduction #Edutech #Informatique_école #Apprentissage