kaparia

animateur d’un espace de création dans le quartier de Kypseli, Athènes

  • D’où viennent les coronavirus ?

    Contre les pandémies, l’écologie

    Sonia Shah - Le Monde diplomatique

    Même au XXIe siècle, les vieux remèdes apparaissent aux yeux des autorités chinoises comme le meilleur moyen de lutter contre l’épidémie due au coronavirus. Des centaines de millions de personnes subiraient des restrictions dans leurs déplacements. N’est-il pas temps de se demander pourquoi les pandémies se succèdent à un rythme de plus en plus soutenu ?

    Serait-ce un pangolin ? Une chauve-souris ? Ou même un serpent, comme on a pu l’entendre un temps avant que cela ne soit démenti ? C’est à qui sera le premier à incriminer l’animal sauvage à l’origine de ce coronavirus, officiellement appelé Covid-19, dont le piège s’est refermé sur plusieurs centaines de millions de personnes, placées en quarantaine ou retranchées derrière des cordons sanitaires en Chine et dans d’autres pays. S’il est primordial d’élucider ce mystère, de telles spéculations nous empêchent de voir que notre vulnérabilité croissante face aux pandémies a une cause plus profonde : la destruction accélérée des habitats.

    Depuis 1940, des centaines de microbes pathogènes sont apparus ou réapparus dans des régions où, parfois, ils n’avaient jamais été observés auparavant. C’est le cas du virus de l’immunodéficience humaine (VIH), d’Ebola en Afrique de l’Ouest, ou encore de Zika sur le continent américain. La majorité d’entre eux (60 %) sont d’origine animale. Certains proviennent d’animaux domestiques ou d’élevage, mais la plupart (plus des deux tiers) sont issus d’animaux sauvages.

    Or ces derniers n’y sont pour rien. En dépit des articles qui, photographies à l’appui, désignent la faune sauvage comme le point de départ d’épidémies dévastatrices (1), il est faux de croire que ces animaux sont particulièrement infestés d’agents pathogènes mortels prêts à nous contaminer. En réalité, la plus grande partie de leurs microbes vivent en eux sans leur faire aucun mal. Le problème est ailleurs : avec la déforestation, l’urbanisation et l’industrialisation effrénées, nous avons offert à ces microbes des moyens d’arriver jusqu’au corps humain et de s’adapter.

    La destruction des habitats menace d’extinction quantité d’espèces (2), parmi lesquelles des plantes médicinales et des animaux sur lesquels notre pharmacopée a toujours reposé. Quant à celles qui survivent, elles n’ont d’autre choix que de se rabattre sur les portions d’habitat réduites que leur laissent les implantations humaines. Il en résulte une probabilité accrue de contacts proches et répétés avec l’homme, lesquels permettent aux microbes de passer dans notre corps, où, de bénins, ils deviennent des agents pathogènes meurtriers.

    Ebola l’illustre bien. Une étude menée en 2017 a révélé que les apparitions du virus, dont la source a été localisée chez diverses espèces de chauves-souris, sont plus fréquentes dans les zones d’Afrique centrale et de l’Ouest qui ont récemment subi des déforestations. Lorsqu’on abat leurs forêts, on contraint les chauves-souris à aller se percher sur les arbres de nos jardins et de nos fermes. Dès lors, il est facile d’imaginer la suite : un humain ingère de la salive de chauve-souris en mordant dans un fruit qui en est couvert, ou, en tentant de chasser et de tuer cette visiteuse importune, s’expose aux microbes qui ont trouvé refuge dans ses tissus. C’est ainsi qu’une multitude de virus dont les chauves-souris sont porteuses, mais qui restent chez elles inoffensifs, parviennent à pénétrer des populations humaines — citons par exemple Ebola, mais aussi Nipah (notamment en Malaisie ou au Bangladesh) ou Marburg (singulièrement en Afrique de l’Est). Ce phénomène est qualifié de « passage de la barrière d’espèce ». Pour peu qu’il se produise fréquemment, il peut permettre aux microbes issus des animaux de s’adapter à nos organismes et d’évoluer au point de devenir pathogènes.

    Il en va de même des maladies transmises par les moustiques, puisque un lien a été établi entre la survenue d’épidémies et la déforestation (3) — à ceci près qu’il s’agit moins ici de la perte des habitats que de leur transformation. Avec les arbres disparaissent la couche de feuilles mortes et les racines. L’eau et les sédiments ruissellent plus facilement sur ce sol dépouillé et désormais baigné de soleil, formant des flaques favorables à la reproduction des moustiques porteurs du paludisme. Selon une étude menée dans douze pays, les espèces de moustiques vecteurs d’agents pathogènes humains sont deux fois plus nombreuses dans les zones déboisées que dans les forêts restées intactes.

    Dangers de l’élevage industriel

    La destruction des habitats agit également en modifiant les effectifs de diverses espèces, ce qui peut accroître le risque de propagation d’un agent pathogène. Un exemple : le virus du Nil occidental, transporté par les oiseaux migrateurs. En Amérique du Nord, les populations d’oiseaux ont chuté de plus de 25 % ces cinquante dernières années sous l’effet de la perte des habitats et d’autres destructions (4). Mais toutes les espèces ne sont pas touchées de la même façon. Des oiseaux dits spécialistes (d’un habitat), comme les pics et les rallidés, ont été frappés plus durement que des généralistes comme les rouges-gorges et les corbeaux. Si les premiers sont de piètres vecteurs du virus du Nil occidental, les seconds, eux, en sont d’excellents. D’où une forte présence du virus parmi les oiseaux domestiques de la région, et une probabilité croissante de voir un moustique piquer un oiseau infecté, puis un humain (5).

    Même phénomène s’agissant des maladies véhiculées par les tiques. En grignotant petit à petit les forêts du Nord-Est américain, le développement urbain chasse des animaux comme les opossums, qui contribuent à réguler les populations de tiques, tout en laissant prospérer des espèces bien moins efficaces sur ce plan, comme la souris à pattes blanches et le cerf. Résultat : les maladies transmises par les tiques se répandent plus facilement. Parmi elles, la maladie de Lyme, qui a fait sa première apparition aux États-Unis en 1975. Au cours des vingt dernières années, sept nouveaux agents pathogènes portés par les tiques ont été identifiés (6).

    Les risques d’émergence de maladies ne sont pas accentués seulement par la perte des habitats, mais aussi par la façon dont on les remplace. Pour assouvir son appétit carnivore, l’homme a rasé une surface équivalant à celle du continent africain (7) afin de nourrir et d’élever des bêtes destinées à l’abattage. Certaines d’entre elles empruntent ensuite les voies du commerce illégal ou sont vendues sur des marchés d’animaux vivants (wet markets). Là, des espèces qui ne se seraient sans doute jamais croisées dans la nature se retrouvent encagées côte à côte, et les microbes peuvent allègrement passer de l’une à l’autre. Ce type de développement, qui a déjà engendré en 2002-2003 le coronavirus responsable de l’épidémie de syndrome respiratoire aigu sévère (SRAS), est peut-être à l’origine du coronavirus inconnu qui nous assiège aujourd’hui.

    Mais bien plus nombreux sont les animaux qui évoluent au sein de notre système d’élevage industriel. Des centaines de milliers de bêtes entassées les unes sur les autres en attendant d’être conduites à l’abattoir : voilà des conditions idéales pour que les microbes se muent en agents pathogènes mortels. Par exemple, les virus de la grippe aviaire, hébergés par le gibier d’eau, font des ravages dans les fermes remplies de poulets en captivité, où ils mutent et deviennent plus virulents — un processus si prévisible qu’il peut être reproduit en laboratoire. L’une de leurs souches, le H5N1, est transmissible à l’homme et tue plus de la moitié des individus infectés. En 2014, en Amérique du Nord, il a fallu abattre des dizaines de millions de volailles pour enrayer la propagation d’une autre de ces souches (8).

    Les montagnes de déjections produites par notre bétail offrent aux microbes d’origine animale d’autres occasions d’infecter les populations. Comme il y a infiniment plus de déchets que ne peuvent en absorber les terres agricoles sous forme d’engrais, ils finissent souvent par être stockés dans des fosses non étanches — un havre rêvé pour la bactérie Escherichia coli. Plus de la moitié des animaux enfermés dans les parcs d’engraissement américains en sont porteurs, mais elle y demeure inoffensive (9). Chez les humains, en revanche, E. coli provoque des diarrhées sanglantes, de la fièvre, et peut entraîner des insuffisances rénales aiguës. Et comme il n’est pas rare que les déjections animales se déversent dans notre eau potable et nos aliments, 90 000 Américains sont contaminés chaque année.

    Bien que ce phénomène de mutation des microbes animaux en agents pathogènes humains s’accélère, il n’est pas nouveau. Son apparition date de la révolution néolithique, quand l’être humain a commencé à détruire les habitats sauvages pour étendre les terres cultivées et à domestiquer les animaux pour en faire des bêtes de somme. En échange, les animaux nous ont offert quelques cadeaux empoisonnés : nous devons la rougeole et la tuberculose aux vaches, la coqueluche aux cochons, la grippe aux canards.

    Le processus s’est poursuivi pendant l’expansion coloniale européenne. Au Congo, les voies ferrées et les villes construites par les colons belges ont permis à un lentivirus hébergé par les macaques de la région de parfaire son adaptation au corps humain. Au Bengale, les Britanniques ont empiété sur l’immense zone humide des Sundarbans pour développer la riziculture, exposant les habitants aux bactéries aquatiques présentes dans ces eaux saumâtres. Les pandémies causées par ces intrusions coloniales restent d’actualité. Le lentivirus du macaque est devenu le VIH. La bactérie aquatique des Sundarbans, désormais connue sous le nom de choléra, a déjà provoqué sept pandémies à ce jour, l’épidémie la plus récente étant survenue en Haïti.

    Heureusement, dans la mesure où nous n’avons pas été des victimes passives de ce processus, nous pouvons aussi faire beaucoup pour réduire les risques d’émergence de ces microbes. Nous pouvons protéger les habitats sauvages pour faire en sorte que les animaux gardent leurs microbes au lieu de nous les transmettre, comme s’y efforce notamment le mouvement One Health (10).

    Nous pouvons mettre en place une surveillance étroite des milieux dans lesquels les microbes des animaux sont le plus susceptibles de se muer en agents pathogènes humains, en tentant d’éliminer ceux qui montrent des velléités d’adaptation à notre organisme avant qu’ils ne déclenchent des épidémies. C’est précisément ce à quoi s’attellent depuis dix ans les chercheurs du programme Predict, financé par l’Agence des États-Unis pour le développement international (Usaid). Ils ont déjà identifié plus de neuf cents nouveaux virus liés à l’extension de l’empreinte humaine sur la planète, parmi lesquels des souches jusqu’alors inconnues de coronavirus comparables à celui du SRAS (11).

    Aujourd’hui, une nouvelle pandémie nous guette, et pas seulement à cause du Covid-19. Aux États-Unis, les efforts de l’administration Trump pour affranchir les industries extractives et l’ensemble des activités industrielles de toute réglementation ne pourront manquer d’aggraver la perte des habitats, favorisant le transfert microbien des animaux aux humains. Dans le même temps, le gouvernement américain compromet nos chances de repérer le prochain microbe avant qu’il ne se propage : en octobre 2019, il a décidé de mettre un terme au programme Predict. Enfin, début février 2020, il a annoncé sa volonté de réduire de 53 % sa contribution au budget de l’Organisation mondiale de la santé.

    Comme l’a déclaré l’épidémiologiste Larry Brilliant, « les émergences de virus sont inévitables, pas les épidémies ». Toutefois, nous ne serons épargnés par ces dernières qu’à condition de mettre autant de détermination à changer de politique que nous en avons mis à perturber la nature et la vie animale.

    Sonia Shah
    Journaliste. Auteure de Pandemic : Tracking Contagions, From Cholera to Ebola and Beyond, Sarah Crichton Books, New York, 2016, et de The Next Great Migration : The Beauty and Terror of Life on the Move, Bloomsbury Publishing, Londres, à paraître en juin 2020. Ce texte a été publié dans The Nation.
    (1) Kai Kupferschmidt, « This bat species may be the source of the Ebola epidemic that killed more than 11,000 people in West Africa », Science Magazine, Washington, DC - Cambridge, 24 janvier 2019.

    (2) Jonathan Watts, « Habitat loss threatens all our futures, world leaders warned », The Guardian, Londres, 17 novembre 2018.

    (3) Katarina Zimmer, « Deforestation tied to changes in disease dynamics », The Scientist, New York, 29 janvier 2019.

    (4) Carl Zimmer, « Birds are vanishing from North America », The New York Times, 19 septembre 2019.

    (5) BirdLife International, « Diversity of birds buffer against West Nile virus », ScienceDaily, 6 mars 2009.

    (6) « Lyme and other tickborne diseases increasing », Centers for Disease Control and Prevention, 22 avril 2019.

    (7) George Monbiot, « There’s a population crisis all right. But probably not the one you think », The Guardian, 19 novembre 2015.

    (8) « What you get when you mix chickens, China and climate change », The New York Times, 5 février 2016. En France, la grippe aviaire a touché les élevages durant l’hiver 2015-2016, et le ministère de l’agriculture estime qu’un risque existe cet hiver pour les volatiles en provenance de Pologne.

    (9) Cristina Venegas-Vargas et al., « Factors associated with Shiga toxin-producing Escherichia coli shedding by dairy and beef cattle », Applied and Environmental Microbiology, vol. 82, n° 16, Washington, DC, août 2016.

    (10) Predict Consortium, « One Health in action », EcoHealth Alliance, New York, octobre 2016.

    (11) « What we’ve found », One Health Institute.

    https://www.monde-diplomatique.fr/2020/03/SHAH/61547

    #coronavirus #écologie #habitat #extinction #ebola #santé #pandémie #déchets #sras #écosystème

    • Merci beaucoup pour celle leçon d’#écologie ! Je voulais acheter ce numéro du Diplo, on est le 16. Il est plus que temps.

      Sur l’élevage, oui mais je vois des végans commencer à sortir leur propagande : il s’agit de faire attention à l’état de santé global de notre environnement, pas de faire la même merde en végétal. Parce que l’agriculture sans animaux, donc pas bio, elle est basée sur des intrants chimiques et fout en l’air les sols et la microfaune, un autre équilibre à préserver.

    • @kassem: merci! je mets le texte en texte intégral:

      The Ecology of Disease
      By Jim Robbins
      July 14, 2012

      THERE’S a term biologists and economists use these days — ecosystem services — which refers to the many ways nature supports the human endeavor. Forests filter the water we drink, for example, and birds and bees pollinate crops, both of which have substantial economic as well as biological value.

      If we fail to understand and take care of the natural world, it can cause a breakdown of these systems and come back to haunt us in ways we know little about. A critical example is a developing model of infectious disease that shows that most epidemics — AIDS, Ebola, West Nile, SARS, Lyme disease and hundreds more that have occurred over the last several decades — don’t just happen. They are a result of things people do to nature.

      Disease, it turns out, is largely an environmental issue. Sixty percent of emerging infectious diseases that affect humans are zoonotic — they originate in animals. And more than two-thirds of those originate in wildlife.

      Teams of veterinarians and conservation biologists are in the midst of a global effort with medical doctors and epidemiologists to understand the “ecology of disease.” It is part of a project called Predict, which is financed by the United States Agency for International Development. Experts are trying to figure out, based on how people alter the landscape — with a new farm or road, for example — where the next diseases are likely to spill over into humans and how to spot them when they do emerge, before they can spread. They are gathering blood, saliva and other samples from high-risk wildlife species to create a library of viruses so that if one does infect humans, it can be more quickly identified. And they are studying ways of managing forests, wildlife and livestock to prevent diseases from leaving the woods and becoming the next pandemic.

      It isn’t only a public health issue, but an economic one. The World Bank has estimated that a severe influenza pandemic, for example, could cost the world economy $3 trillion.

      The problem is exacerbated by how livestock are kept in poor countries, which can magnify diseases borne by wild animals. A study released earlier this month by the International Livestock Research Institute found that more than two million people a year are killed by diseases that spread to humans from wild and domestic animals.

      The Nipah virus in South Asia, and the closely related Hendra virus in Australia, both in the genus of henipah viruses, are the most urgent examples of how disrupting an ecosystem can cause disease. The viruses originated with flying foxes, Pteropus vampyrus, also known as fruit bats. They are messy eaters, no small matter in this scenario. They often hang upside down, looking like Dracula wrapped tightly in their membranous wings, and eat fruit by masticating the pulp and then spitting out the juices and seeds.

      The bats have evolved with henipah over millions of years, and because of this co-evolution, they experience little more from it than the fruit bat equivalent of a cold. But once the virus breaks out of the bats and into species that haven’t evolved with it, a horror show can occur, as one did in 1999 in rural Malaysia. It is likely that a bat dropped a piece of chewed fruit into a piggery in a forest. The pigs became infected with the virus, and amplified it, and it jumped to humans. It was startling in its lethality. Out of 276 people infected in Malaysia, 106 died, and many others suffered permanent and crippling neurological disorders. There is no cure or vaccine. Since then there have been 12 smaller outbreaks in South Asia.

      In Australia, where four people and dozens of horses have died of Hendra, the scenario was different: suburbanization lured infected bats that were once forest-dwellers into backyards and pastures. If a henipah virus evolves to be transmitted readily through casual contact, the concern is that it could leave the jungle and spread throughout Asia or the world. “Nipah is spilling over, and we are observing these small clusters of cases — and it’s a matter of time that the right strain will come along and efficiently spread among people,” says Jonathan Epstein, a veterinarian with EcoHealth Alliance, a New York-based organization that studies the ecological causes of disease.

      That’s why experts say it’s critical to understand underlying causes. “Any emerging disease in the last 30 or 40 years has come about as a result of encroachment into wild lands and changes in demography,” says Peter Daszak, a disease ecologist and the president of EcoHealth.

      Emerging infectious diseases are either new types of pathogens or old ones that have mutated to become novel, as the flu does every year. AIDS, for example, crossed into humans from chimpanzees in the 1920s when bush-meat hunters in Africa killed and butchered them.

      Diseases have always come out of the woods and wildlife and found their way into human populations — the plague and malaria are two examples. But emerging diseases have quadrupled in the last half-century, experts say, largely because of increasing human encroachment into habitat, especially in disease “hot spots” around the globe, mostly in tropical regions. And with modern air travel and a robust market in wildlife trafficking, the potential for a serious outbreak in large population centers is enormous.

      The key to forecasting and preventing the next pandemic, experts say, is understanding what they call the “protective effects” of nature intact. In the Amazon, for example, one study showed an increase in deforestation by some 4 percent increased the incidence of malaria by nearly 50 percent, because mosquitoes, which transmit the disease, thrive in the right mix of sunlight and water in recently deforested areas. Developing the forest in the wrong way can be like opening Pandora’s box. These are the kinds of connections the new teams are unraveling.

      Public health experts have begun to factor ecology into their models. Australia, for example, has just announced a multimillion-dollar effort to understand the ecology of the Hendra virus and bats.

      IT’S not just the invasion of intact tropical landscapes that can cause disease. The West Nile virus came to the United States from Africa but spread here because one of its favored hosts is the American robin, which thrives in a world of lawns and agricultural fields. And mosquitoes, which spread the disease, find robins especially appealing. “The virus has had an important impact on human health in the United States because it took advantage of species that do well around people,” says Marm Kilpatrick, a biologist at the University of California, Santa Cruz. The pivotal role of the robin in West Nile has earned it the title “super spreader.”

      And Lyme disease, the East Coast scourge, is very much a product of human changes to the environment: the reduction and fragmentation of large contiguous forests. Development chased off predators — wolves, foxes, owls and hawks. That has resulted in a fivefold increase in white-footed mice, which are great “reservoirs” for the Lyme bacteria, probably because they have poor immune systems. And they are terrible groomers. When possums or gray squirrels groom, they remove 90 percent of the larval ticks that spread the disease, while mice kill just half. “So mice are producing huge numbers of infected nymphs,” says the Lyme disease researcher Richard Ostfeld.

      “When we do things in an ecosystem that erode biodiversity — we chop forests into bits or replace habitat with agricultural fields — we tend to get rid of species that serve a protective role,” Dr. Ostfeld told me. “There are a few species that are reservoirs and a lot of species that are not. The ones we encourage are the ones that play reservoir roles.”

      Dr. Ostfeld has seen two emerging diseases — babesiosis and anaplasmosis — that affect humans in the ticks he studies, and he has raised the alarm about the possibility of their spread.

      The best way to prevent the next outbreak in humans, specialists say, is with what they call the One Health Initiative — a worldwide program, involving more than 600 scientists and other professionals, that advances the idea that human, animal and ecological health are inextricably linked and need to be studied and managed holistically.

      “It’s not about keeping pristine forest pristine and free of people,” says Simon Anthony, a molecular virologist at the Center for Infection and Immunity at Columbia University’s Mailman School of Public Health. “It’s learning how to do things sustainably. If you can get a handle on what it is that drives the emergence of a disease, then you can learn to modify environments sustainably.”

      The scope of the problem is huge and complex. Just an estimated 1 percent of wildlife viruses are known. Another major factor is the immunology of wildlife, a science in its infancy. Raina K. Plowright, a biologist at Pennsylvania State University who studies the ecology of disease, found that outbreaks of the Hendra virus in flying foxes in rural areas were rare but were much higher in urban and suburban animals. She hypothesizes that urbanized bats are sedentary and miss the frequent exposure to the virus they used to get in the wild, which kept the infection at low levels. That means more bats — whether from poor nutrition, loss of habitat or other factors — become infected and shed more of the virus into backyards.

      THE fate of the next pandemic may be riding on the work of Predict. EcoHealth and its partners — the University of California at Davis, the Wildlife Conservation Society, the Smithsonian Institution and Global Viral Forecasting — are looking at wildlife-borne viruses across the tropics, building a virus library. Most of the work focuses on primates, rats and bats, which are most likely to carry diseases that affect people.

      Most critically, Predict researchers are watching the interface where deadly viruses are known to exist and where people are breaking open the forest, as they are along the new highway from the Atlantic to the Pacific across the Andes in Brazil and Peru. “By mapping encroachment into the forest you can predict where the next disease could emerge,” Dr. Daszak, EcoHealth’s president, says. “So we’re going to the edge of villages, we’re going to places where mines have just opened up, areas where new roads are being built. We are going to talk to people who live within these zones and saying, ‘what you are doing is potentially a risk.’ ”

      It might mean talking to people about how they butcher and eat bush meat or to those who are building a feed lot in bat habitat. In Bangladesh, where Nipah broke out several times, the disease was traced to bats that were raiding containers that collected date palm sap, which people drank. The disease source was eliminated by placing bamboo screens (which cost 8 cents each) over the collectors.

      EcoHealth also scans luggage and packages at airports, looking for imported wildlife likely to be carrying deadly viruses. And they have a program called PetWatch to warn consumers about exotic pets that are pulled out of the forest in disease hot spots and shipped to market.

      All in all, the knowledge gained in the last couple of years about emerging diseases should allow us to sleep a little easier, says Dr. Epstein, the EcoHealth veterinarian. “For the first time,” he said, “there is a coordinated effort in 20 countries to develop an early warning system for emerging zoonotic outbreaks.”

      Correction: July 22, 2012
      An earlier version of this article described imprecisely the affiliation of Simon Anthony, a molecular virologist. While he works with EcoHealth, an organization of scientists devoted to wildlife conservation, his primary affiliation is as a postdoctoral research fellow at the Center for Infection and Immunity at Columbia University’s Mailman School of Public Health.