Facebook and NYU School of Medicine launch research collaboration to improve MRI – Facebook Code

/facebook-and-nyu-school-of-medicine-lau

  • Facebook and NYU School of Medicine launch research collaboration to improve MRI – Facebook Code
    https://code.fb.com/ai-research/facebook-and-nyu-school-of-medicine-launch-research-collaboration-to-improv

    C’est bô le langage fleuri des experts en public relation...

    Using AI, it may be possible to capture less data and therefore scan faster, while preserving or even enhancing the rich information content of magnetic resonance images. The key is to train artificial neural networks to recognize the underlying structure of the images in order to fill in views omitted from the accelerated scan. This approach is similar to how humans process sensory information. When we experience the world, our brains often receive an incomplete picture — as in the case of obscured or dimly lit objects — that we need to turn into actionable information. Early work performed at NYU School of Medicine shows that artificial neural networks can accomplish a similar task, generating high-quality images from far less data than was previously thought to be necessary.

    In practice, reconstructing images from partial information poses an exceedingly hard problem. Neural networks must be able to effectively bridge the gaps in scanning data without sacrificing accuracy. A few missing or incorrectly modeled pixels could mean the difference between an all-clear scan and one in which radiologists find a torn ligament or a possible tumor. Conversely, capturing previously inaccessible information in an image can quite literally save lives.

    Advancing the AI and medical communities
    Unlike other AI-related projects, which use medical images as a starting point and then attempt to derive anatomical or diagnostic information from them (in emulation of human observers), this collaboration focuses on applying the strengths of machine learning to reconstruct the most high-value images in entirely new ways. With the goal of radically changing the way medical images are acquired in the first place, our aim is not simply enhanced data mining with AI, but rather the generation of fundamentally new capabilities for medical visualization to benefit human health.

    In the interest of advancing the state of the art in medical imaging as quickly as possible, we plan to open-source this work to allow the wider research community to build on our developments. As the project progresses, Facebook will share the AI models, baselines, and evaluation metrics associated with this research, and NYU School of Medicine will open-source the image data set. This will help ensure the work’s reproducibility and accelerate adoption of resulting methods in clinical practice.

    What’s next
    Though this project will initially focus on MRI technology, its long-term impact could extend to many other medical imaging applications. For example, the improvements afforded by AI have the potential to revolutionize CT scans as well. Advanced image reconstruction might enable ultra-low-dose CT scans suitable for vulnerable populations, such as pediatric patients. Such improvements would not only help transform the experience and effectiveness of medical imaging, but they’d also help equalize access to an indispensable element of medical care.

    We believe the fastMRI project will demonstrate how domain-specific experts from different fields and industries can work together to produce the kind of open research that will make a far-reaching and lasting positive impact in the world.

    #Resonance_magnetique #Intelligence_artificielle #Facebook #Neuromarketing