Geoengineering is very controversial. How can you do experiments ? Harvard has some ideas.

/614025

  • Geoengineering is very controversial. How can you do experiments? Harvard has some ideas. - MIT Technology Review
    https://www.technologyreview.com/s/614025/geoengineering-experiment-harvard-creates-governance-committee-cli

    A prestigious university forging ahead with an outdoor experiment is a major milestone for the field, known as geoengineering. But it’s fraught with controversy. Critics fear such a step will lend scientific legitimacy to the idea that we could turn the dial on Earth’s climate. And they fret that even doing experiments is starting down a slippery slope toward creating a tool of incredible power.

    Despite the critics, Harvard will take a significant step forward on Monday, as the university announces the formation of a committee to ensure that researchers take appropriate steps to limit health and environmental risks, seek and incorporate outside input, and operate in a transparent manner.

    It’s a move that could create a template for how geoengineering research is conducted going forward, and perhaps pave the way for more experiments to follow.

    Mach said the committee may ultimately recommend that the proposal be altered, delayed, or canceled, and her understanding is that the research team will treat such guidance with the “utmost seriousness” and “respond in a public way.”

    But some think that by creating the committee, the university is rushing ahead of the public and political debate on this issue.

    “It’s an extremely high-profile institution that’s decided they don’t want to wait for the regulatory regimes to greenlight this,” says Wil Burns, co-director of the Institute for Carbon Removal Law and Policy at American University.

    From an engineering standpoint, the team could be ready for an initial test flight within about six months. The current plan is to launch from a site somewhere in New Mexico. The scientists, however, have said they won’t pursue the experiment until the committee completes its review and will heed a determination that they should stop.

    The basic idea behind what’s known as solar geoengineering is that we could use planes, balloons, or even very long hoses to disperse certain particles into the atmosphere, where they could reflect enough sunlight back into space to moderately cool the planet.

    Most of the research to date has been conducted using software climate simulations or experiments in the lab. While the models show that the technique will lower temperatures, some have found it might unleash unintended environmental impacts, such as altering monsoon patterns and food production, depending on how it’s done.

    Only two known experiments that could be seen as related to solar geoengineering have been carried out in the open air to date. Researchers at the University of California, San Diego, sprayed smoke and salt particles off the coast of California in 2011, and scientists in Russia dispersed aerosols from a helicopter and car in 2009.

    Plans for a proposed outdoor experiment in the United Kingdom, known as the SPICE project, were dropped in 2012, amid public criticism and conflict-of-interest accusations.

    The Harvard experiment, first proposed in a 2014 paper, will launch a scientific balloon equipped with propellers and sensors around 20 kilometers (12 miles) above Earth. The aircraft would release between 100 grams and 2 kilograms of sub-micrometer-size particles of calcium carbonate, a substance naturally found in shells and limestone, in a roughly kilometer-long plume.

    The balloon would then fly through the plume, enabling the sensors to measure things such as how broadly the particles disperse, how they interact with other compounds in the atmosphere, and how reflective they are.

    The researchers hope these observations could help assess and refine climate simulations and otherwise inform the ongoing debate over the feasibility and risks of various approaches to geoengineering.

    “If anything, I’m concerned that the current climate models make solar geoengineering look too good,” Frank Keutsch, a professor of chemistry and the project’s principal investigator, said in a statement. “If we want to be able to predict how large-scale geoengineering would disrupt the ozone layer, or the exchange of air between the troposphere and stratosphere, we need more real-world observations.”

    The project is being funded through Harvard grants to the professors involved and the university’s Solar Geoengineering Research Program, a multidisciplinary effort to study feasibility, risks, ethics, and governance issues. The organization has raised more than $16 million from Microsoft cofounder Bill Gates, the Hewlett Foundation, the Alfred P. Sloan Foundation, and other philanthropic groups and individuals.

    But there are concerns with the way the Harvard team is moving ahead.

    “It doesn’t pose a physical risk, but it does pose a considerable social and political risk in being the first step towards development of actual technology for deployment,” Raymond Pierrehumbert, a physics professor at the University of Oxford, has said of the experiment. “There would be some limited scientific payback from such a small-scale experiment, but it is mostly a stunt to break the ice and get people used to the idea of field trials.”

    Another question is whether the new committee is adequately independent, given Harvard’s involvement in the first step of the selection process. The university’s dean of engineering and vice provost for research created an external search committee, made up of three individuals from outside the university, to select the chair of the advisory panel. Bedsworth, in turn, chose the rest of the members.

    The counterargument is that the US political system is effectively broken on the topic of global warming. The inability to raise public funds for research—or pass strict legislation, for that matter—has little to do with the merits of the science, or the importance of the issue, and everything to do with the poisoned politics of climate change, says Jane Long, a former associate director at Lawrence Livermore National Laboratory, who served on the search committee.

    “We’re so dysfunctional from a political perspective,” says Long, who pushed early on for the researchers to create a governance board. “I don’t know how you can draw the conclusion that we’ve gotten a democratic signal that we shouldn’t do this research.”

    The committee is made up of a mix of social scientists and legal and technical experts, including Michael Gerrard, a law professor at Columbia; Shuchi Talati, a fellow at the Union of Concerned Scientists; Robert Lempert, a principal researcher at RAND; and Raj Pandya, director of Thriving Earth Exchange.

    But it doesn’t include any representatives of the public—say, from New Mexico, where the experiment is likely to occur—or, Burns notes, any outspoken geoengineering critics.

    It’s also notable that everyone is based in the US. Flegal has previously criticized proponents of geoengineering research for failing to call on enough voices from developing nations, even as they argue that the tools could be especially important in helping to address the disproportionate impact of climate change on the global poor.

    Harvard professor David Keith, one of the main figures behind the experiment, acknowledged that there are reasonable concerns about independence. But he said Harvard made a good-faith effort to create a committee several layers removed from the researchers. He adds that it’s not the only form of oversight, noting that the project will also have to pass muster with Harvard’s safety committee, Federal Aviation Administration regulations, and provisions of the National Environmental Policy Act.

    #Climat #Géoengineering #Hubris