What AI still can’t do

/what-ai-still-cant-do

  • What AI still can’t do - MIT Technology Review
    https://www.technologyreview.com/s/615189/what-ai-still-cant-do

    In less than a decade, computers have become extremely good at diagnosing diseases, translating languages, and transcribing speech. They can outplay humans at complicated strategy games, create photorealistic images, and suggest useful replies to your emails.

    Yet despite these impressive achievements, artificial intelligence has glaring weaknesses.

    Machine-learning systems can be duped or confounded by situations they haven’t seen before. A self-driving car gets flummoxed by a scenario that a human driver could handle easily. An AI system laboriously trained to carry out one task (identifying cats, say) has to be taught all over again to do something else (identifying dogs). In the process, it’s liable to lose some of the expertise it had in the original task. Computer scientists call this problem “catastrophic forgetting.”

    These shortcomings have something in common: they exist because AI systems don’t understand causation. They see that some events are associated with other events, but they don’t ascertain which things directly make other things happen. It’s as if you knew that the presence of clouds made rain likelier, but you didn’t know clouds caused rain.

    But there’s a growing consensus that progress in AI will stall if computers don’t get better at wrestling with causation. If machines could grasp that certain things lead to other things, they wouldn’t have to learn everything anew all the time—they could take what they had learned in one domain and apply it to another. And if machines could use common sense we’d be able to put more trust in them to take actions on their own, knowing that they aren’t likely to make dumb errors.

    Pearl’s work has also led to the development of causal Bayesian networks—software that sifts through large amounts of data to detect which variables appear to have the most influence on other variables. For example, GNS Healthcare, a company in Cambridge, Massachusetts, uses these techniques to advise researchers about experiments that look promising.

    In one project, GNS worked with researchers who study multiple myeloma, a kind of blood cancer. The researchers wanted to know why some patients with the disease live longer than others after getting stem-cell transplants, a common form of treatment. The software churned through data with 30,000 variables and pointed to a few that seemed especially likely to be causal. Biostatisticians and experts in the disease zeroed in on one in particular: the level of a certain protein in patients’ bodies. Researchers could then run a targeted clinical trial to see whether patients with the protein did indeed benefit more from the treatment. “It’s way faster than poking here and there in the lab,” says GNS cofounder Iya Khalil.

    Nonetheless, the improvements that Pearl and other scholars have achieved in causal theory haven’t yet made many inroads in deep learning, which identifies correlations without too much worry about causation. Bareinboim is working to take the next step: making computers more useful tools for human causal explorations.

    Getting people to think more carefully about causation isn’t necessarily much easier than teaching it to machines, he says. Researchers in a wide range of disciplines, from molecular biology to public policy, are sometimes content to unearth correlations that are not actually rooted in causal relationships. For instance, some studies suggest drinking alcohol will kill you early, while others indicate that moderate consumption is fine and even beneficial, and still other research has found that heavy drinkers outlive nondrinkers. This phenomenon, known as the “reproducibility crisis,” crops up not only in medicine and nutrition but also in psychology and economics. “You can see the fragility of all these inferences,” says Bareinboim. “We’re flipping results every couple of years.”

    On reste quand même dans la fascination technologique

    Bareinboim described this vision while we were sitting in the lobby of MIT’s Sloan School of Management, after a talk he gave last fall. “We have a building here at MIT with, I don’t know, 200 people,” he said. How do those social scientists, or any scientists anywhere, decide which experiments to pursue and which data points to gather? By following their intuition: “They are trying to see where things will lead, based on their current understanding.”

    That’s an inherently limited approach, he said, because human scientists designing an experiment can consider only a handful of variables in their minds at once. A computer, on the other hand, can see the interplay of hundreds or thousands of variables. Encoded with “the basic principles” of Pearl’s causal calculus and able to calculate what might happen with new sets of variables, an automated scientist could suggest exactly which experiments the human researchers should spend their time on.

    #Intelligence_artificielle #Causalité #Connaissance #Pragmatique #Machine_learning