la saga du vaccin à ARN messager désormais dans le sprint final

/covid-19-la-saga-du-vaccin-a-arn-messag

  • « Pas assez de recul sur les vaccins contre le Covid-19 » ? Ce que 3,5 milliards de doses injectées nous ont appris
    https://www.lemonde.fr/les-decodeurs/article/2021/07/16/pas-assez-de-recul-sur-les-vaccins-contre-le-covid-19-ce-que-3-5-milliards-d

    Les nombreuses campagnes massives de vaccination lancées à travers le monde ont, en sept mois, fourni de nombreuses informations aux scientifiques.

    Le 8 décembre 2020, au petit matin, Margaret Keenan, une Britannique de 90 ans, est devenue la première personne à bénéficier d’un vaccin spécialement conçu contre le Covid-19 – hors essais cliniques. Depuis, de nombreux pays ont lancé leur propre campagne de vaccination afin d’enrayer la pandémie sur leur territoire et dessiner une sortie de crise.

    En France, après une accélération continue jusqu’à l’été, la campagne a fortement ralenti ces dernières semaines en raison des hésitations et du scepticisme d’une partie de la population quant à l’efficacité et la sûreté des vaccins actuels – depuis les annonces d’Emmanuel Macron étendant l’usage du passe sanitaire, le rythme de la vaccination est reparti à un rythme inédit. A ces inquiétudes et interrogations, de nombreuses équipes de scientifiques ont tenté de répondre en étudiant leurs effets réels, en suivant et en étudiant notamment des cohortes de très grande taille (parfois des populations entières) qui permettent de mesurer avec une grande précision l’impact de la vaccination. Et après plus de sept mois de vaccination, les enseignements sont nombreux.

    Que peut-on dire de l’efficacité réelle des vaccins actuels ?
    Résistent-ils bien aux variants du SARS-CoV-2 ?
    Combien de temps dure la protection immunitaire conférée ?
    Qu’a-t-on appris de leurs effets secondaires avérés ou potentiels ?
    Des effets indésirables peuvent-ils se manifester longtemps après la vaccination ?

    1. Que peut-on dire de l’efficacité réelle des vaccins actuels ?

    En avril 2020, l’Organisation mondiale de la santé (OMS) avait fixé un objectif minimum de 50 % d’efficacité pour les vaccins en développement contre le Covid-19, tout en précisant qu’une efficacité de 70 % serait préférable. Après 3,54 milliards de doses injectées dans le monde, on dispose désormais de nombreuses observations qui viennent confirmer que les vaccins distribués aujourd’hui ont très nettement dépassé ces objectifs.

    Le vaccin BNT162b2 conçu par Pfizer-BioNTech est globalement celui qui a les résultats les plus positifs. Dans l’étude la plus solide, publiée en mai 2021 dans The Lancet, qui a suivi une cohorte de 1,65 million de personnes en Israël, les chercheurs concluent que celui-ci est efficace à 95,3 % pour l’infection au SARS-CoV-2, à 97,2 % pour éviter les hospitalisations et à 96,7 % pour éviter les décès chez les vaccinés ayant reçu leur seconde dose depuis au moins sept jours. L’efficacité est encore supérieure lorsqu’on attend au moins quatorze jours après l’injection de la seconde dose, puisqu’elle atteint 98,1 % pour éviter les décès dus au Covid-19. L’étude a, par ailleurs, été réalisée alors que le variant B.1.1.7 (dit variant Alpha, découvert en Angleterre), plus contagieux et entraînant plus de formes graves, composait 95 % des nouveaux cas en Israël.

    L’autre vaccin à ARN messager (ARNm), celui du laboratoire américain Moderna, obtient des résultats similaires au Comirnaty de Pfizer-BioNTech. L’essai clinique de phase 3 a montré environ 94,1 % d’efficacité contre les formes symptomatiques de la maladie. Une étude ultérieure menée sur une large cohorte au Qatar, composée de peu de personnes âgées et d’une majorité d’actifs, a conclu à une efficacité de 100 % contre l’infection au variant Alpha, et de 95,7 % contre les formes graves et les décès dus au Covid-19 (variant Alpha et Gamma confondus) lorsque le schéma vaccinal est complet (deux semaines après la deuxième dose). Les mêmes travaux ont abouti à une protection de 92,5 % contre les infections asymptomatiques, paramètre-clé pour bloquer la transmission interhumaine du virus. Le vaccin américain est également très efficace contre les hospitalisations, selon plusieurs travaux. Une étude observationnelle américaine disponible en prépublication depuis le 8 juillet estime son efficacité à 90 %, tandis qu’une équipe canadienne l’estime à 96 % pour les personnes ayant reçu leur seconde dose.

    Le troisième vaccin à avoir été autorisé en Europe et en France, celui d’AstraZeneca (nommé ChAdOx1), a également des résultats positifs, même si moins spectaculaires que ses concurrents à ARNm. L’essai clinique de phase 3 réalisé face à la souche historique du SARS-CoV-2 indiquait une efficacité de 62,1 % pour ceux qui ont reçu deux doses standards, mais de 90 % pour les sujets dont la première dose était diminuée de moitié. Il en résulte une efficacité moyenne contre les infections d’environ 70,4 %. Des études ultérieures ont mis en évidence une efficacité supérieure de 81,5 % à prévenir les infections symptomatiques par la souche historique et de 70,4 % par le variant Alpha. Si sa capacité à empêcher l’infection par le virus et donc la transmission interhumaine est moindre que les vaccins à ARNm, le vaccin d’AstraZeneca se montre d’un niveau comparable lorsqu’il s’agit de protéger des formes graves de la maladie. Une large étude écossaise publiée début mai 2021 a estimé que le ChAdOx1 atteignait 88 % d’efficacité de réduction des hospitalisations dues au Covid-19.

    Tous ces chiffres sont valables pour la population adulte. Chez les adolescents (12 à 15 ans), les chiffres sont encore meilleurs. Le vaccin Comirnaty de Pfizer-BioNTech, le seul à être autorisé pour les moins de 16 ans en France, a montré une efficacité de 100 % dans cette tranche d’âge lors des essais cliniques de phase 3 : aucun des 1 005 adolescents complètement vaccinés n’a été infecté par le Covid-19, tandis que 16 des 978 adolescents qui ont reçu un placebo ont contracté la maladie.

    2. Résistent-ils bien aux variants du SARS-CoV-2 ?

    C’est une question cruciale alors que le variant Delta du SARS-CoV-2, plus contagieux, devient majoritaire en France et qu’en conséquence la situation sanitaire se dégrade. Le vaccin de Pfizer-BioNTech résiste globalement bien à tous les variants qui ont émergé jusque-là : de l’Alpha (découvert en Angleterre) au Delta (en Inde), même si le vaccin germano-américain est légèrement moins performant contre ce dernier.

    En mai 2021, des travaux britanniques ont estimé son efficacité à 88 % contre les infections symptomatiques au variant Delta. Le mois suivant, deux équipes ont abouti à des chiffres similaires : des chercheurs écossais ont estimé cette efficacité à 79 %, tandis qu’une équipe canadienne a trouvé environ 87 % d’efficacité.

    De leur côté, les services du ministère de la santé israélien ont constaté que l’efficacité du vaccin de Pfizer-BioNTech était tombée à 64 % récemment (en ce qui concerne les infections). Attention, il convient de prendre ce chiffre avec précaution, puisque la méthodologie employée n’est pas exempte de biais, selon plusieurs chercheurs israéliens. En revanche, le vaccin est toujours aussi efficace pour réduire les hospitalisations et se maintient à 93 %, même face au variant Delta.

    Le produit de l’entreprise anglo-suédoise AstraZeneca montre, lui, moins d’efficacité au variant Delta mais fournit toujours un très haut niveau de protection contre les formes graves de la maladie et donc contre les hospitalisations et les décès dus au Covid-19. Là où le vaccin Made in UK atteignait 73 % d’efficacité contre l’infection au variant Alpha, il ne fournit « que » 60 % d’efficacité contre le variant Delta, selon des travaux écossais publiés dans The Lancet à la fin du mois de juin, un chiffre cohérent avec les conclusions d’une autre équipe britannique, selon lesquelles le vaccin d’AstraZeneca est efficace à 60 % pour prévenir les infections au variant Delta.

    En revanche, le vaccin anglo-suédois se maintient bien sur la prévention des hospitalisations et des décès, un paramètre-clé pour éviter d’engorger le système de santé. Une nouvelle analyse de Public Health England, publiée le 14 juin, conclut que celui-ci protège à environ 92 % contre une hospitalisation due au variant Delta.

    Le variant Delta affaiblit légèrement les vaccins, qui demeurent assez efficaces

    Il existe toutefois beaucoup moins de travaux sur le vaccin à ARNm Moderna, et notamment sur son efficacité face au variant Delta, qui n’a pas encore fait l’objet de travaux publiés dans une revue scientifique. Néanmoins, la société américaine a fait savoir, par voie de communiqué de presse, le 29 juin, que des travaux in vitro ont montré que le vaccin demeurait efficace contre quasiment tous les variants existants du coronavirus, même si le nombre réduit d’anticorps produits affaiblit légèrement la force de la réaction immunitaire (2,1 fois moins d’anticorps neutralisants mesurés contre le variant Delta). D’autres variants du SARS-CoV-2 altèrent plus l’efficacité du vaccin de Moderna, mais ces variants (Kappa, Eta) ne sont pas considérés comme dangereux par l’OMS.

    Même chose pour le vaccin à dose unique fabriqué par l’entreprise américaine Johnson & Johnson. On ne dispose que de très peu de données publiques, mais le laboratoire a publié un communiqué le 1er juillet affirmant que des tests ont démontré que le vaccin demeurait efficace contre le variant Delta. Collectées sur un sous-échantillon de huit patients, les données montrent une efficacité de 85 % contre les formes graves du Covid-19. La firme n’a pas communiqué de données relatives à l’efficacité pour l’infection au coronavirus.

    3. Combien de temps dure la protection immunitaire conférée ?

    Il est encore un peu tôt pour savoir exactement combien de temps les personnes vaccinées seront immunisées contre le coronavirus, mais les connaissances et observations accumulées jusque-là ont apporté des nouvelles rassurantes sur cet aspect. Une étude inédite publiée le 28 juin dans Nature, menée par l’immunologiste américain Ali Ellebedy, montre que la réponse immunitaire des personnes complètement vaccinées par le Pfizer-BioNTech est même plus durable qu’envisagée en premier lieu.

    Pour quantifier précisément cette réponse immunitaire, les chercheurs ne se sont pas contentés de mesurer la quantité d’anticorps circulant dans le sang, ils ont également extrait des échantillons des ganglions lymphatiques jusqu’à quinze semaines après la première dose sur quatorze personnes vaccinées. Le résultat principal de cette étude est que chez tous ces vaccinés les centres germinatifs étaient encore présents et actifs, ce qui signifie que le système immunitaire de ces personnes continuait à produire des lymphocytes B, lesquels synthétisent les anticorps et incarnent la mémoire immunitaire qui permet au corps de lutter contre le virus, même longtemps après la vaccination ou l’infection.

    « Habituellement, en quatre à six semaines, on n’observe presque plus rien », indique Deepta Bhattacharya, un immunologiste interrogé par le New York Times. Ces travaux montrent aussi que l’immunité conférée par le vaccin de Pfizer-BioNTech pourra probablement résister aux futures évolutions du SARS-CoV-2. Il est difficile de savoir combien de temps la protection conférée par ce vaccin durera, mais il apparaît désormais probable aux immunologistes qu’elle puisse durer plusieurs années.

    Le vaccin mRNA-1273 de Moderna confère lui aussi une protection durable, selon les observations réalisées. Un article paru dans le New England Journal of Medicine, le 10 juin, observait que les essais sérologiques pratiqués sur des personnes ayant reçu le mRNA-1273 montraient un haut niveau d’anticorps six mois après la seconde dose, ce qui est un très bon résultat, signe que cette protection est, elle aussi, durable.

    4. Qu’a-t-on appris de leurs effets secondaires avérés ou potentiels ?

    Les essais cliniques des vaccins actuellement disponibles ont fourni de très bons résultats en matière de sécurité, que les larges campagnes de vaccination des pays occidentaux ont pu en grande partie confirmer. Ainsi, on recense une grande majorité d’effets bénins, transitoires et attendus, tels que de la fatigue, de la fièvre, des douleurs musculaires au point d’injection, des maux de tête.

    Des réactions allergiques violentes, appelées « chocs anaphylactiques », ont également été observées. Ces réactions bien connues sont rarissimes mais peuvent être dangereuses et se déclenchent dans les minutes après l’injection chez des personnes ayant un fort terrain allergique. C’est pour cette raison que les vaccinés sont gardés en observation au moins quinze minutes.

    L’Agence nationale de sécurité des médicaments (ANSM) a, depuis le début de la campagne de vaccination, mis en place un suivi resserré des effets indésirables des vaccins grâce à la mobilisation en temps réel de tous les centres régionaux de pharmacovigilance (CRPV) du pays. L’agence publie au moins deux fois par mois des rapports dans lesquels elle fait état des signalements reçus du public et enquête ensuite sur les « signaux » enregistrés, c’est-à-dire les signalements dont le caractère nouveau ou la fréquence sont inhabituels et nécessite une investigation.

    Parmi les « signaux » confirmés, on compte actuellement :
    45 cas de myocardites rapportés depuis le début de la vaccination pour le Pfizer-BioNTech et 7 cas pour le vaccin d’AstraZeneca. La majorité des cas sont rétablis ou en passe de l’être. La fréquence dans la population vaccinée par le Pfizer-BioNTech est légèrement supérieure à celle observée dans la population générale, le rôle du vaccin est retenu mais pas encore confirmé. Il s’agit d’un effet rare d’évolution favorable ;

    plusieurs cas de réactions aiguës au site d’injection pour le vaccin de Moderna. Déjà décrites dans les essais cliniques, ces réactions locales douloureuses surviennent en moyenne huit jours après l’injection. Dans les cas les plus aigus, ces douleurs prolongées ont entraîné une perte temporaire de mobilité du bras ;

    plusieurs cas d’hypertension artérielle ont été observés pour le vaccin de Moderna ;

    des cas de syndromes pseudo-grippaux sont fréquemment rapportés pour le vaccin d’AstraZeneca ;

    53 cas de troubles thromboemboliques ont été signalés pour le vaccin d’AstraZeneca depuis le début de son utilisation en France, dont 13 décès. Ces troubles restent extrêmement rares (53 occurrences sur 6,56 millions d’injections, soit 0,0008 % des doses) ;

    plusieurs cas de la maladie de Clarkson ont été signalés au niveau européen, l’Agence européenne des médicaments considère que le vaccin d’AstraZeneca ne doit pas être utilisé chez des patients ayant des antécédents connus d’hyperperméabilité capillaire.

    Cela étant dit, la fréquence de ces effets indésirables est extrêmement faible et n’est pas supérieure à celles observées sur d’autres vaccins. Ces effets secondaires, quasiment tous temporaires et d’évolution favorable , sont assez loin d’égaler les bénéfices réels des vaccins et ne remettent donc pas en cause leur balance risques-bénéfices, qui est, de l’avis de la communauté scientifique compétente, très positive.

    5. Des effets indésirables peuvent-ils se manifester longtemps après la vaccination ?

    C’est une crainte répandue parmi les nombreuses personnes réfractaires ou hésitantes à la vaccination contre le Covid-19, qui perçoivent notamment les vaccins à ARN messager comme étant trop nouveaux pour qu’on ait de quelconques certitudes sur leur sécurité. On ne peut donc pas argumenter sur ce point avec les rapports rassurants de ces derniers mois, puisque cette crainte porte sur ce que les chercheurs ne savent pas encore.

    Outre que la technique de l’ARNm n’est pas tout à fait nouvelle https://www.lemonde.fr/sciences/article/2020/11/30/covid-19-la-saga-du-vaccin-a-arn-messager-dans-le-sprint-final_6061695_16506, donner du contexte historique peut aider à comprendre pourquoi cette crainte n’est pas partagée par la communauté savante. Dans la longue histoire de la vaccination, aucune maladie rare n’a jamais été détectée plus de huit semaines après la vaccination. Il existe, bien sûr, des exemples de troubles rares liés à la vaccination qui ont pu être diagnostiqués plusieurs mois après l’injection d’un vaccin, mais les symptômes de ceux-ci sont toujours apparus dans les premières semaines.

    Dans le cas présent des vaccins anti-Covid-19, la survenue à retardement de maladies rares est considérée comme un risque très faible pour plusieurs raisons scientifiques. La première étant que la surveillance actuelle autour de ces vaccins est si réactive et resserrée qu’elle a permis très tôt la mise en évidence de très rares troubles de la coagulation avec le vaccin d’AstraZeneca. Si les vaccins actuels, qui ont été distribués massivement, devaient induire des maladies graves rares, il est aujourd’hui jugé très improbable que les agences de pharmacovigilance puissent manquer leurs signaux.

    La seconde raison relève davantage de la biologie, puisque les vaccins à ARNm ne contiennent globalement que deux ingrédients relativement simples et fragiles : une capsule de lipides contenant un brin d’ARN messager, la première étant chargée de transporter le second. Or, toutes deux disparaissent très vite sans laisser de trace lorsqu’elles rencontrent une cellule humaine. La capsule de lipide va simplement se dissoudre en libérant l’ARN dans l’intérieur de la cellule. L’ARN étant par nature une molécule instable, elle va elle-même se décomposer en quelques heures, après avoir rempli sa mission. Il n’existe donc aucun mécanisme biologique susceptible d’avoir des répercussions au-delà de ces quelques semaines.

    « Les effets indésirables des vaccins surviennent dans les deux premières semaines, exceptionnellement le premier mois. Il n’y a aucune maladie clinique survenant à distance », a affirmé ainsi au Figaro Brigitte Autran, professeure émérite à Sorbonne Université et membre du comité scientifique sur les #vaccins #Covid-19.

    • Effets indésirables vaccinaux : retour sur des alertes historiques, confirmées ou non, Sandrine Cabut, Pascale Santi, Hervé Morin et Stéphane Foucart, 19 décembre 2020 (même source)
      https://www.lemonde.fr/planete/article/2020/12/19/effets-indesirables-vaccinaux-retour-sur-des-alertes-historiques-confirmees-

      La défiance envers la vaccination s’est nourrie de plusieurs apparitions inattendues d’effets indésirables. Certains étaient dus aux injections, d’autres le fruit de fraudes, quand d’autres encore restent non résolus.

      Rougeole, tétanos, grippe, hépatite B… Les vaccinations permettent d’éviter 2 à 3 millions de décès par an, estime l’Organisation mondiale de la santé (OMS), qui considère que cette stratégie est l’un des investissements les plus rentables dans le domaine de la santé. L’histoire des vaccins est cependant émaillée d’épisodes où leur innocuité a été, à tort ou à raison, mise en doute. Dans ce domaine, la suspicion d’effets indésirables crée d’autant plus d’émoi qu’il s’agit de traitements préventifs, s’adressant donc à des individus en bonne santé.

      En 1955, le premier vaccin contre la poliomyélite, mis au point par l’Américain Jonas Salk, a ainsi été à l’origine d’un des plus graves événements post-vaccinaux. Testé avec succès un an plus tôt, ce vaccin inactivé a été administré en masse aux Etats-Unis, entraînant plus de 160 cas de polio avec paralysie et une dizaine de décès. Ce qui restera comme le « Cutter Incident », du nom du fabricant, était en fait dû à un processus inapproprié d’inactivation du virus de la poliomyélite au cours de la fabrication du vaccin. Les précautions et procédures nées de cet épisode historique n’ont pas toujours permis d’éviter l’apparition d’effets indésirables. Passage en revue d’exemples – avérés ou non – survenus lors de précédentes campagnes de vaccination.

      Hépatite B et sclérose en plaques

      Le gouvernement français lance en 1994 une vaste campagne de vaccination contre le virus de l’hépatite B, une maladie transmise par voie sexuelle et sanguine et pouvant entraîner des cirrhoses ainsi que des cancers du foie. Elle cible les collégiens de 10-11 ans mais va bien au-delà. Au total, près de 20 millions de Français seront vaccinés. Le nombre de cas de scléroses en plaques postvaccinales notifiées au système de pharmacovigilance est passé de 36 en 1992 à plus de 1 000 au début des années 2000, ce qui a conduit le gouvernement à suspendre la campagne de vaccination dans les milieux scolaires en 1998. Existe-t-il un lien de cause à effet ?

      Question n°1 : La justice européenne a-t-elle reconnu le lien entre sclérose en plaques et vaccination contre l’hépatite B ?

      « Les données internationales sur l’utilisation de ce vaccin ne montrent pas de surrisque de survenue d’une sclérose en plaques chez les personnes vaccinées, indique l’Inserm, ni de maladie démyélinisante. » L’Etat a toutefois indemnisé des soignants qui ont développé une maladie neurologique après avoir été vaccinés, ce qui va créer la confusion. Mais les bénéfices d’une vaccination restent très supérieurs aux risques. En France, la vaccination contre l’hépatite B est obligatoire pour tous les enfants nés après le 1er janvier 2018 et recommandée jusqu’à l’âge de 15 ans.

      La fraude d’Andrew Wakefield à propos du ROR

      La vaccination contre la rougeole, les oreillons et la rubéole (ROR) peut-elle engendrer un syndrome autistique ? C’est l’hypothèse soutenue en 1998 dans The Lancet par le gastro-entérologue anglais Andrew Wakefield. Les résultats de l’étude, qui ne portait que sur 12 enfants, n’ont pas pu être reproduits par d’autres équipes. Et pour cause : en 2004, une enquête du journaliste Brian Deer, dans le Sunday Times, devait montrer que Wakefield monnayait ses conseils aux parents attaquant les laboratoires pharmaceutiques et qu’il avait déposé un brevet pour un vaccin censé être plus sûr. Une enquête subséquente de l’équivalent britannique du conseil de l’ordre des médecins lui valut d’en être radié, et aboutit à la rétractation de son étude par The Lancet en 2010. L’année suivante, Brian Deer concluait, cette fois dans le British Medical Journal, que les résultats étaient frauduleux.

      Andrew Wakefield n’en a pas moins poursuivi sa croisade contre le ROR, dans le documentaire Vaxxed (2016), contribuant à l’affaiblissement de la couverture vaccinale, qui s’est traduit par la résurgence de la rougeole : aux Etats-Unis, Donald Trump, acquis aux thèses de Wakefield, a dû en 2019 se résoudre à appeler à la vaccination. Le lien entre ROR et autisme a à nouveau été démenti par une vaste étude de cohorte en mars 2019.

      H1N1 et narcolepsie

      En août 2010, peu après la fin officielle de la pandémie de grippe H1N1, une vingtaine de cas de narcolepsie-cataplexie ont été recensés en Europe chez des enfants et des adultes qui avaient été vaccinés contre ce virus. L’alerte était partie de Suède et de Finlande. Maladie neurologique habituellement très rare, la narcolepsie-cataplexie se caractérise par des accès sévères de somnolence, et des pertes brutales du tonus musculaire. Elle peut survenir dans les suites d’une infection notamment de type grippal.

      Une association forte avec le Pandemrix, vaccin pandémique avec adjuvant, a été établie par plusieurs études. [à l’inverse de l’article des Décodeurs, https://www.vidal.fr/actualites/13356-vaccin-pandemrix-et-narcolepsie-risque-tres-faible-mais-confirme.html signale "Les délais moyens d’apparition des premiers symptômes chez les adultes étaient de 4,7 mois (2 jours à 2,5 ans), et de 3,9 mois (15 jours à 1,3 an) chez les enfants et les adolescents." ] Celui-ci pourrait servir de facteur déclenchant à la narcolepsie par un mécanisme immunitaire, la maladie survenant alors chez des sujets prédisposés génétiquement. En Europe, où le Pandemrix était le vaccin prédominant, il a été administré à plus de 30 millions de personnes. En 2017, le nombre total de cas de narcolepsie postvaccinale était estimé à 650, dont une centaine en France. Des procédures d’indemnisation sont toujours en cours au niveau de l’Office national d’indemnisation des accidents médicaux (Oniam).

      Dengue : le fiasco de Sanofi aux Philippines

      Lancé fin 2015, le vaccin Dengvaxia, développé par l’industriel pharmaceutique français Sanofi, a dû être suspendu deux ans plus tard, car il présentait un risque chez des enfants n’ayant ­jamais contracté cette maladie tropicale avant la vaccination. Transmise par des moustiques et provoquant un syndrome de type grippal, la dengue est responsable de 10 000 décès par an dans le monde.

      Aux Philippines, premier pays au monde à bénéficier d’une vaccination de masse, 830 000 écoliers ont reçu une ou plusieurs injections dans le cadre d’un vaste programme de vaccination publique lancé en mars 2016. Des enquêtes ont été ouvertes après plusieurs décès d’enfants, qui ont pu être engendrés par un phénomène identifié de facilitation de l’infection par les anticorps vaccinaux : les individus vaccinés ne présentant aucun antécédent de dengue se retrouvent davantage à risque de souffrir de formes sévères de l’infection en cas d’exposition ultérieure au virus. Depuis, interdit aux Philippines, le vaccin est réservé aux personnes de 9 à 45 ans qui ont déjà été infectées. Il est approuvé par près de 20 pays dont l’Union européenne, les Etats-Unis.

      Le cas des vaccins contre les HPV

      Les vaccins contre les infections à papillomavirus humains (HPV), virus responsables de lésions qui peuvent évoluer vers certains cancers (col de l’utérus, anus, gorge), sont au centre d’une controverse que les essais randomisés n’ont pas suffi à éteindre. En février 2020, trois chercheurs publiaient dans la revue Systematic Reviews une réanalyse de 24 études cliniques, portant un jugement sévère sur les protocoles mis en œuvre, qui « empêchent une évaluation approfondie » des risques d’effet indésirable. Par exemple, selon Lars Jorgensen (Nordic Cochrane Centre, Rigshospitalet de Copenhague) et ses coauteurs, les groupes recevant les vaccins ont été comparés à des groupes témoins recevant les adjuvants à l’aluminium seuls ou d’autres vaccins comportant ces mêmes produits, et non un véritable placebo. En France, ces vaccins contre les HPV sont recommandés pour les jeunes filles et le seront également pour les garçons à partir de janvier 2021.

      Des doutes sur l’aluminium

      Des doutes sur l’innocuité de l’aluminium des vaccins ont été émis il y a une vingtaine d’années, principalement en France. L’équipe du professeur Romain Gherardi, de l’hôpital Henri-Mondor à Créteil (Val-de-Marne), estime en effet qu’il existe un lien entre la persistance de l’aluminium vaccinal au site d’injection et la survenue de troubles peu spécifiques cognitifs, fatigue, douleurs musculaires et articulaires, appelées myofasciites à macrophages.

      L’association Entraide aux malades de myofasciite à macrophages (E3M) estime qu’environ un millier de personnes seraient touchées. Elle demande un vaccin contre le Covid-19 sans aluminium – cet adjuvant est absent des trois vaccins les plus avancés. « Compte tenu des données disponibles à ce jour à l’échelle internationale, l’innocuité des sels d’aluminium contenus dans les vaccins ne peut être remise en cause », indique le site vaccination-info-service.fr, le portail institutionnel de Santé publique France.

    • COVID-19 Vaccine Janssen : Guillain-Barré syndrome listed as a very rare side effect
      https://www.ema.europa.eu/en/news/covid-19-vaccine-janssen-guillain-barre-syndrome-listed-very-rare-side-ef

      EMA’s safety committee, PRAC, assessed the available evidence, including cases reported to the European database for suspected side effects (EudraVigilance), and information from scientific literature. PRAC looked at 108 cases of GBS reported worldwide as of 30 June, when over 21 million people had received the vaccine.1 There was one reported death among these reports.

      Edit pour Pfizer chez les jeunes, en particuliers hommes

      https://www.liberation.fr/checknews/robert-malone-presente-comme-linventeur-des-vaccins-a-arn-messager-soppos

      un comité réuni par les centres pour le contrôle et la prévention des maladies (CDC) ont déclaré qu’il existe un « lien probable » entre une inflammation du cœur rare et ces vaccins. Aux Etats-Unis, on comptait début juin 323 cas confirmés chez des patients de 29 ans ou moins (principalement des hommes), qu’il faut rapporter aux quelque 50 millions de doses administrées à la classe d’âge des 12-29 ans. A noter que, parmi eux, neuf personnes étaient toujours hospitalisées, mais aucune décédée.

  • Vaccins : « Utiliser l’ARN messager n’est pas nouveau, c’est savoir le fabriquer qui est nouveau »
    https://www.franceinter.fr/societe/vaccins-utiliser-l-arn-messager-n-est-pas-nouveau-c-est-savoir-le-fabriq

    Alors que les vaccinations contre la Covid-19 se poursuivent, y compris en France, ces nouveaux vaccins, à base d’ARN messager, posent question. Invité du journal de 13h de France Inter, Steve Pascolo, chercheur à l’université de Zurich et ex-dirigeant du laboratoire Cure Vac, apporte des éclaircissements.

    [...] Les vaccins à ARN messager reposent donc sur une part de l’ADN du virus qui sert à « coder » des protéines. Et en réalité, cela n’est pas nouveau : « Le vaccin ROR, rougeole, oreillons, rubéole, fonctionne avec des virus à ARN atténué. Lors qu’il est injecté, les virus donnent dans vos cellules leur ARN messager, explique le chercheur. On est sur une version synthétique de choses anciennes. Les vaccins de type ROR contiennent beaucoup d’ARN, de lipides, de protéines différentes, ils sont produits dans des œufs fertilisés. Alors que les vaccins ARN nouveaux ne contiennent que la molécule d’ARN, seule, pure, et quatre lipides. Autrement dit, la version à ARN messager est beaucoup plus pure et plus sûre que les vaccins à ARN produits de façon naturelle, que vous avez eus précédemment ».

    « Si le vaccin causait des recombinaisons d’ADN, le virus le ferait aussi »

    L’avantage de cette méthode par rapport à la production « classique » des vaccins, c’est sa rapidité. « Une fois que vous avez l’infrastructure pour produire de l’ARN messager, vous pouvez produire de l’ARN messager qui code pour n’importe quelle protéine. Le processus de production est toujours le même, et il dure maximum deux mois (...) alors que les autres méthodes demandent de l’optimisation, un temps qui peut prendre plusieurs semaines à plusieurs mois », selon Steve Pascolo.

    A-t-on assez de recul pour mesurer l’impact de l’injection d’ARN messager ? « En réalité, on a des millions d’années d’expérience, explique le spécialiste. Notre corps est affecté en permanence par des virus, des bactéries, et il y a de l’ARN messager partout dans ces virus. Ils infectent votre corps et vous donnent leur ARN. Ca n’affecte pas votre ADN pour autant ». Peu de risques, également, que des échanges et recombinaisons donnent naissance à de nouveaux virus : "On ne peux jamais l’exclure, mais ces mécanismes de « Transplacing » sont très, très précis et très définis. Nous avons des millions d’ARN messagers dans nos cellules, et ils ne recombinent pas entre eux. Il n’y a pas de raison d’imaginer que l’ARN messager du vaccin puisse faire ce type de recombinaison. Et s’il le pouvait, alors le virus le ferait aussi, puisque cet ARN messager code pour une protéine du virus".

    Vers des vaccins anti-cancer ?

    [...]

    Par ailleurs, ces vaccins peuvent connaître des applications nouvelles, et notamment contre les cancers. C’est même une technologie déjà utilisée, mais de façon individuelle, selon Steve Pascolo : « Il y a beaucoup d’essais cliniques de phase 2, des essais pivots. On peut produire et développer des vaccins anti-cancer individualisés, pour chaque patient. La tumeur est analysée, séquencée, on trouve les mutations de la tumeur chez le patient et on fait de l’ARN messager vaccinal qui code pour ces mutations. Chaque patient reçoit son vaccin et totalement individualisé, et cela en moins de deux mois : c’est cela qui est en cours de développement ».

    • Frederic Lagarce, @frlagarce, Professeur de Biopharmacie/ PUPH CS PUI @chu_angers Vice-Doyen
      @FacSante_Angers /EIC @pthpjournal /Recherche #nanomedecine
      https://twitter.com/frlagarce/status/1412804385613230098

      Un peu ras le bol d’entendre certains dire qu’ils sont des cobayes pour le #vaccin. contre la covid-19 Je vous fais un mini thread pour vous expliquer pourquoi c’est faux.

      Les premiers #vaccins_ARNm ont été proposé par une équipe de l’APHP (MArtinon Eur J Immunol) en 1993, cette date est celle où l’efficacité a été démontrée chez l’animal déjà contre un virus, celui de la grippe.

      en 2018 Moderna et BioNtech avaient déjà des essais cliniques sur l’homme (phase 1) dans le domaine de la cancérologie (mélanome) ou de l’infectiologie et devinez... pour déjà des maladies virales.

      Ces vaccins on d’ailleurs eu un développement préclinique dans le cadre de MERS-COV et SARS-COV1 il y a respectivement environ 15 ans et 10 ans mais comme les épidémies se sont éteintes les développements se sont arrétés.

      Les vecteurs de ces vaccins : les nanocapsules lipidiques existent depuis plus de 20 ans, mon labo @LabMint a déposé ces premiers brevets en 2001, on travaille dessus depuis 1998. on a démontré (comme d’autres) la très bonnes tolérance de ces vaccins sur de multiples modèles

      A #Angers rien que pour @LabMint on a sorti plus de 200 publications internationales sur ce thème. une autre équipe
      @umr8612 a démontré en parallèle la tolérance en particulier sur la tox pulmonaire.

      Quand en janvier 2020 la séquence génétique du virus Sars-cov2 a été décrite, tout était prêt depuis des années pour lancer des essais de grande ampleur, seul l’argent manquait et les états ont contribué fortement à régler ce pb

      Vous le voyez, utiliser aujourd’hui un vaccin ARNm c’est profiter d’une technologie mise en place sur 25 années et testées par de multiples labo universitaires et pharmaceutiques dans le monde. Les vaccins ARNm sont l’avenir de la vaccination

      En effet ils permettent une production plus rapide, moins complexe et plus maîtrisable que les autres vaccins classiques. Les vaccins peuvent être adaptés en quelques semaines. Alors VACCINEZ VOUS !

    • Covid-19 : la saga du vaccin à ARN messager désormais dans le sprint final
      https://www.lemonde.fr/sciences/article/2020/11/30/covid-19-la-saga-du-vaccin-a-arn-messager-dans-le-sprint-final_6061695_16506

      ENQUÊTE Contre toute attente, c’est une technologie encore jamais éprouvée sur l’homme qui a permis de proposer le plus rapidement des solutions vaccinales contre le SARS-CoV-2, via les projets de Pfizer/BioNTech et de Moderna. Retour sur une course de vitesse lancée il y a plusieurs décennies.

      Imaginons un instant la finale olympique d’une course de fond. Ils sont douze sur la ligne de départ, dont quatre Chinois et quatre Américains, attendant le coup de feu sous le regard des caméras du monde entier. Dix d’entre eux présentent de sérieuses références : des titres, des records, un palmarès. Les deux derniers, à l’inverse, semblent sortis de nulle part. Non seulement ils n’ont rien gagné mais ils n’ont même jamais couru une finale. On les prétend doués, prometteurs, mais peuvent-ils seulement boucler les tours de piste imposés, eux qui ne se sont alignés jusqu’ici que sur des distances inférieures ? Personne n’y songe sérieusement. Pourtant, au terme d’une épreuve menée à une vitesse éclair, ce sont eux qui coupent la ligne les premiers, presque côte à côte.

      L’histoire du vaccin contre le Covid-19 n’est pas terminée. Car pour filer la métaphore athlétique jusqu’au bout, elle ressemblerait plutôt à un décathlon qu’à un 5 000 mètres. Une fois le produit mis au point, il va encore falloir le faire habiliter par les autorités sanitaires, le produire, le stocker, le distribuer, l’administrer. Autant d’épreuves nouvelles dans lesquelles nos nouveaux venus peuvent encore échouer, ou prendre du retard. Il n’empêche, l’exploit est là : les deux premiers vaccins à avoir réussi avec succès les essais cliniques – ceux du duo Pfizer/BioNTech et de Moderna –, avec dans les deux cas une efficacité annoncée d’environ 95 %, s’appuient sur la technologie dite de l’ARN messager.

      Dans le principe, rien de plus simple. Pour réaliser un vaccin, les chercheurs fabriquent habituellement un antigène qu’ils présentent au système immunitaire afin que celui-ci produise des anticorps adaptés. Différentes méthodes sont possibles : utiliser le virus entier, inactivé ou atténué, se contenter d’un fragment, ou le combiner avec un virus déjà bien maîtrisé. La nouvelle méthode laisse les cellules faire le travail : elle consiste à injecter dans l’organisme non pas l’antigène mais son mode d’emploi, son code génétique, sous forme d’ARN (acide ribonucléique).

      « Une histoire de fou »

      Les spécialistes lui promettaient un grand avenir. Elle restait pourtant cantonnée dans les laboratoires de recherche, loin des hôpitaux et des pharmacies. « C’est une histoire de fou, s’éblouit Bruno Pitard, directeur de recherche (CNRS) au centre de cancérologie et d’immunologie Nantes-Angers. Aucun produit à base d’ARN messager n’avait dépassé la phase 2 d’un essai clinique, ni en cancérologie, ni en immunologie, ni en virologie. Et là, premier essai de phase 3, jackpot ! J’ai beau vanter le potentiel de cette technologie depuis des années, je n’imaginais pas un tel scénario. Bien sûr, les données ne sont toujours pas publiées dans des articles scientifiques dignes de ce nom et tout est allé si vite qu’on manque de recul, on y verra plus clair dans quelques mois. Mais cette aventure est d’ores et déjà extraordinaire. »

      S’il fallait lui trouver un visage, nul doute qu’il aurait les traits ciselés et le sourire franc de Katalin Kariko. Franc et fatigué, à en croire l’écran de l’ordinateur à travers lequel la biochimiste répond à nos questions, depuis sa maison des environs de Philadelphie (Pennsylvanie), où elle se tient confinée. Née en Hongrie il y a 65 ans, elle a grandi dans la petite ville de Kisujszallas, où son père est boucher, et s’est tôt prise de passion pour les sciences. Décidée, la jeune femme a choisi le terrain aride de la biochimie et plus particulièrement de l’ARN. Rien de bien séduisant, de prime abord, dans ce polymère composé d’une succession de nucléotides, A, C, G et U, à l’image de notre alphabet génétique. Là où, dans chaque cellule, son cousin l’ADN conserve le code de notre vie, avec lequel il construira notre descendance, lui semble se contenter d’assurer le transport de l’information, notamment pour fabriquer les protéines. Petit copiste, en somme, que cet ARN messager.

      La réalité est bien différente. L’ARN tient de multiples rôles, catalytiques, structurels, informationnels. La chercheuse en herbe rêve d’en percer les secrets. La tâche est laborieuse. Au Centre de recherche biologique de Szeged, où elle commence sa carrière à 23 ans, « on manquait de tout », raconte-t-elle. C’est à l’abattoir voisin qu’il faut parfois aller chercher le matériel biologique nécessaire. Aussi quitte-t-elle la Hongrie, en 1985, avec son mari et sa fille de 2 ans. « Nous partions sans rien, se souvient-elle. Enfin si, un peu d’argent que la famille avait collecté. Mais nous n’avions pas le droit de sortir de devises du pays à l’époque. Nous l’avons caché dans l’ours en peluche de la petite. »

      Katalin Kariko, génie marginalisé

      Deux ans à Temple University, à Philadelphie, avant d’être recrutée par la maison voisine, la célèbre université de Pennsylvanie. Fondée en 1740, « UPenn » est une institution, un des huit établissements qui constituent la célèbre Ivy League, le gotha académique du pays. C’est là, au département de cardiologie, que Katalin Kariko découvre un article écrit par Philip Felgner, de la biotech californienne Vical, et des chercheurs de l’université du Wisconsin. Ils ont injecté de l’ADN et de l’ARN dans la cuisse d’une souris et ont constaté l’expression de la protéine correspondante. « Nous avons choisi de nous consacrer à l’ADN, se remémore l’immunologiste, aujourd’hui directeur du centre de recherche vaccinale de l’université de Californie à Irvine. C’était l’époque de la thérapie génique, on se disait qu’on pourrait ainsi corriger les anomalies génétiques. Nous avons aussi travaillé sur un vaccin contre la grippe, avec le soutien du laboratoire Merck. Mais nous n’avons jamais abouti. J’ai quand même la satisfaction d’avoir eu ma petite part dans une innovation qui va changer le monde. »

      La thérapie génique n’agite pas seulement la Californie. C’est aussi la grande affaire de UPenn : utiliser l’ADN pour transformer les cellules et s’attaquer aussi bien à la mucoviscidose qu’au cancer. Katalin Kariko poursuit le même but. La mucoviscidose constitue même la cible de ses rêves. Mais son arme à elle sera l’ARN. « Elle avait compris qu’en attaquant l’ADN, en modifiant le génome des cellules, on prenait le risque d’introduire des modifications génétiques délétères, qui peuvent se multiplier, se rappelle David Langer, jeune médecin qui travaille alors avec elle, aujourd’hui directeur du département de neurochirurgie de l’hôpital Lenox Hill, à New York. Or Kati n’est pas seulement un génie scientifique, c’est aussi une femme d’une droiture absolue. Et d’une grande franchise. Elle a donc fait savoir son opposition. »

      Elle le paye. En 1995, elle est écartée de la liste des titularisations, rétrogradée au rang de simple chercheuse. Elle est même renvoyée du département de cardiologie. « Ils disaient qu’elle n’avait pas assez de résultats, raconte David Langer. C’était ridicule. J’étais d’autant plus écœuré que toute la famille rêvait déjà d’inscrire Susan Francia, la fille de Kati, à UPenn. Elle était brillante mais ils n’avaient pas d’argent. Sa seule chance, c’était la réduction accordée aux enfants du personnel. Mon père connaissait le patron du département de neurochirurgie. Je lui ai raconté qui était Kati et de qui nous allions nous priver. Il l’a accueillie. »

      Katalin Kariko hésite. Tourner les talons ou accepter le salaire de misère de chercheuse et le bureau au sous-sol ? « J’aimais ce que je faisais. Mon mari m’a toujours dit que je ne travaillais pas vraiment puisque je m’amusais au laboratoire. Et c’est vrai. Alors j’ai continué. »

      Drew Weissman et Katalin Kariko, à UPenn, en 2015. Ils sont les premiers à avoir maîtrisé les réactions immunitaires liées à l’ARN messager. Katalin Kariko est vice-présidente de BioNTech depuis 2013.
      Drew Weissman et Katalin Kariko, à UPenn, en 2015. Ils sont les premiers à avoir maîtrisé les réactions immunitaires liées à l’ARN messager. Katalin Kariko est vice-présidente de BioNTech depuis 2013. COLLECTION PRIVÉE
      Ce splendide isolement prend fin un jour de 1998, devant la photocopieuse. C’est elle qui rejoue le dialogue :

      « Bonjour, je suis Kati, je fais de l’ARN.

      – Moi c’est Drew, je fais un vaccin contre le sida avec de l’ADN. Enfin j’essaie, ça ne marche pas. Tu crois que tu pourrais faire de l’ARN pour moi ? »

      Cape d’invisibilité

      Entre le jeune et discret médecin immunologiste Drew Weissman, tout juste sorti de l’illustre laboratoire d’Anthony Fauci au NIH (National Institutes of Health, les Instituts américains de la santé), et la chercheuse audacieuse et marginalisée démarre une collaboration qui continue aujourd’hui. « Nous étions dans deux bâtiments séparés, mais nous échangions sans cesse », se souvient-elle. Ils n’avaient pas vraiment le choix, du reste. « Personne d’autre ne s’intéressait à ce que nous faisions, poursuit-elle. La plupart des gens nous prenaient pour des dingues. Dans l’université comme à l’extérieur. Au NIH, on nous écoutait poliment mais on n’y croyait pas une seconde. Les mêmes m’appellent maintenant deux fois par semaine mais, à l’époque, il n’était pas question de nous accorder une bourse. Mon argent, je l’ai pris ailleurs et sur d’autres sujets. »

      Le travail est fastidieux. Car l’ARN pose de sérieux problèmes. Le plus épineux est cette fâcheuse tendance à affoler le système immunitaire. Convaincu d’avoir affaire à un intrus – bactérie ou virus –, le corps envoie ses troupes de défense, provoquant de sévères inflammations. Les souris y laissent au mieux leur santé, souvent leur vie. « Nous avons décidé de passer en revue les 140 modifications connues des structures de l’ARN (ajout de groupes chimiques, changement des bases, des sucres, de la structure) et nous en avons testé vingt, rapporte Drew Weissman. Deux d’entre elles se sont révélées vraiment efficaces. » Des changements subtils, qui recouvrent l’ARN d’une cape d’invisibilité. Publiée en 2005, cette découverte fait sortir Katalin Kariko de son gourbi. Mais pas du purgatoire. « Ils m’ont dit que jamais, dans l’histoire de l’établissement, un chercheur rétrogradé n’avait été titularisé. »

      Le principal verrou a sauté. Le rêve des deux chercheurs d’utiliser l’ARN comme mode d’emploi et de laisser ensuite les cellules fabriquer elles-mêmes les protéines thérapeutiques prend forme. En 2008, ils découvrent que l’ARN modifié produit même dix fois plus de protéines qu’un ARN naturel. « Cette publication, je ne l’oublierai pas. J’étais aux Jeux de Pékin, en août, avec ma fille, sélectionnée dans le huit d’aviron des Etats-Unis. Et à la fin de la journée, à l’hôtel, je regardais mes mails. » La fille, Susan Francia, diplômée en criminologie de l’université de Pennsylvanie, décroche l’or olympique. La mère rentre au bercail avec un article de plus dans sa besace. Et les publications s’enchaînent. En 2011, Kariko et Weissman purifient encore leur ARN pour éviter toute réaction immunitaire incontrôlée. En 2012, ils réussissent à faire produire par des souris et des singes de l’hormone EPO afin de les soigner de leur anémie.

      Un obstacle de taille, toutefois, demeure : si l’ARN peut tromper le système immunitaire, il reste la cible d’enzymes spécialisées, omniprésentes dans nos organismes. Les chercheurs décident de loger leur précieuse molécule dans des nanoparticules lipidiques, des sortes de sphères électriquement chargées à double pellicule de graisse qui se dissoudront une fois entrées dans les cellules. Ils publient leur résultat en 2015.

      Le début d’une nouvelle ère

      La construction théorique du duo est achevée. Les promesses d’application thérapeutiques de l’ARN messager aiguisent désormais les appétits des entreprises de biotechnologies, particulièrement aux Etats-Unis et en Allemagne. Une communauté de chercheurs est née, avec ses leaders, son congrès, l’International mRNA Health Conference : ils sont 160 en 2013, à Tübingen, en Allemagne, pour la première édition. En 2019, plus de 600 scientifiques se retrouveront à Berlin.

      Cette nouvelle ère s’est ouverte en 2010. Derrick Rossi, un médecin canadien qui a grandi à Toronto, professeur à l’université Harvard, a décelé là le moyen de fabriquer sans risque des cellules souches pluripotentes, capables ensuite de se différencier dans l’organisme pour combattre différentes pathologies. Les cellules souches sont à la mode. Son article attire l’attention. Le magazine Time le propulse dans son Top 10 des découvertes scientifiques de l’année. « Kati Kariko mérite le prix Nobel, je le dis depuis longtemps, mais sans notre travail, je ne sais pas combien de temps elle serait restée sous le radar », dit-il. Rossi flaire le filon. Il contacte son collègue de Harvard Robert Langer, star de l’ingénierie biologique et entrepreneur éprouvé, et l’homme d’affaires Noubar Afeyan. Il leur parle de cellules souches, mais aussi de protéines thérapeutiques, capables par exemple de cibler les cellules cancéreuses. « Les vaccins, on n’y pensait pas vraiment. En fait, ça n’intéressait personne car ce n’est pas un modèle économique rentable. Vous vaccinez une ou deux fois et c’est terminé. »

      Le nom de leur entreprise, c’est Derrick Rossi qui va le proposer : Moderna pour « Modified RNA », précisément l’innovation publiée en 2005 par les chercheurs de UPenn. Sauf que cette pierre angulaire du système fait l’objet d’un brevet, déposé par l’université. Katalin Kariko et Drew Weissman y figurent au titre d’auteurs. Ils proposent bien à leur établissement d’en racheter la propriété en 2010. Mais impossible pour eux de réunir les 300 000 dollars réclamés. C’est une biotech du Wisconsin, CellScript, qui rafle la mise. Gary Dahl, son patron, a compris qu’il détient de l’or et qu’on s’arrachera bientôt ses licences. L’équipe de Moderna tente d’en acquérir les droits, la négociation échoue.

      Le mercato des chercheurs

      Moderna n’a pas seulement couru après la technologie du duo de Philadelphie. L’ambitieuse start-up a aussi tenté de s’attacher leurs services, surtout ceux de Katalin Kariko. Lassée des mauvaises manières de la direction de UPenn, la chercheuse a justement décidé de partir. En 2013, elle va rencontrer l’équipe de direction dans le Massachusetts. « A la fin de l’entretien, ils m’expliquent que, même s’ils m’embauchent, ils peuvent me virer au bout de deux jours. Et que pendant deux ans, je devrai renoncer à travailler sur les ARN messagers. J’avais envie de rester aux Etats-Unis mais pas dans n’importe quelles conditions. »

      C’est donc vers l’Europe qu’elle se tourne, plus précisément l’Allemagne, ou deux start-up lui font les yeux doux. La première se nomme CureVac. Fondée en 2000 par l’Allemand Ingmar Hoerr et le Français Steve Pascolo, dans l’incubateur de la prestigieuse université de Tübingen, elle a réalisé, entre 2003 et 2006, le premier essai clinique d’un « vaccin anticancer » à base d’ARN messager. « Les médecins et les universitaires ne nous prenaient pas au sérieux, se remémore Steve Pascolo, aujourd’hui patron du laboratoire de dermatologie de l’hôpital de Zurich. Les journaux Nature et Science n’ont pas voulu de notre article, c’était trop audacieux. Finalement, nous l’avons publié en 2008 dans le Journal of Immunotherapy, une revue modeste, ce qui permet aux Américains de l’oublier et de faire comme s’ils avaient été les premiers partout. »

      Précisons toutefois que la substance, si elle a été bien tolérée par les patients et a montré sa capacité à déclencher une réponse antitumorale, n’a pas fait la preuve de son efficacité clinique. CureVac va toutefois poursuivre sa quête de thérapies anticancéreuses – « c’est ce qui intéressait les investisseurs qui nous soutenaient », se souvient Pascolo – mais aussi de vaccins.

      L’autre prétendant se nomme BioNTech. Créée à Mayence, en Allemagne, par le couple de médecins d’origine turque Ugur Sahin et Ozlem Tureci, la société a développé une approche horizontale que résume son concurrent Steve Pascolo : « Tout ce qui peut être bon pour lutter conte le cancer, on le teste et on l’optimise. Pour ça, on va chercher les meilleurs partout. Il faut dire qu’ils ont un atout : Ugur Sahin. C’est un génie scientifique, médical et entrepreneurial. » Fils d’ouvrier, arrivé en Allemagne à l’âge de 4 ans, il se rêvait médecin au chevet des patients. Mais au cours de sa thèse d’immunologie, un virus le contamine : la recherche. Cologne, Zurich, Mayence : il enchaîne les postes d’enseignant-chercheur. Mais pour mettre en œuvre ses idées et « soigner le monde », lui et sa femme se font entrepreneurs. D’abord Ganymed Pharmaceuticals, créée en 2001, revendu 1,28 milliard d’euros en 2016. Puis BioNTech, lancée par le couple en 2010.

      Les Français en éclaireurs

      Curiosité scientifique, souci sanitaire, ambition économique : Katalin Kariko est séduite. Elle raconte : « Ugur Sahin m’a invitée à donner une conférence à Mayence, le 17 juillet 2013. Il était attentif, direct, enthousiaste, simple. Je me suis sentie appréciée. Nous avons beaucoup parlé et constaté que nous avions été élevés de manière similaire. Je me souviens qu’il m’a dit qu’il aimait le fait que j’étais honnête, transparente, que je ne faisais pas semblant… A la fin de la journée, il m’a proposé d’être vice-présidente de l’entreprise. » Elle poursuit : « Il avait de vrais projets cliniques. J’avais 58 ans, je voulais que mon travail serve vraiment aux malades. J’ai accepté. »

      Le décor est posé, les acteurs en place. Une société américaine, deux allemandes, prêtes à faire de l’ARN messager une machine de guerre contre les maladies génétiques, l’hémophilie, le diabète, mais surtout le cancer. Les Français ? Comme souvent, ils ont joué les éclaireurs. Dès 1993, une équipe de chercheurs de l’Inserm et du laboratoire Pasteur-Mérieux est parvenue à déclencher une réponse immunitaire à partir d’ARN messager encapsulé dans des sphères de lipides. « Ensuite, on a essayé d’industrialiser le process, se rappelle Pierre Meulien, coordinateur de l’étude, alors directeur de la recherche de Pasteur-Mérieux, aujourd’hui directeur exécutif de IMI (initiatives pour des médicaments innovants), un partenariat entre l’Union européenne et l’industrie pharmaceutique. Ça marchait une fois sur deux, on ne comprenait pas pourquoi. J’ai pris la décision d’arrêter en 1994. »

      Deux décennies plus tard, l’histoire bafouille. Sanofi-Pasteur, l’héritier du groupe Pasteur-Mérieux, obtient en 2011 un financement de la Darpa, la division de recherche de l’armée américaine, pour développer un programme de vaccins à ARN messager. Le géant pharmaceutique a convié à bord l’ambitieuse biotech CureVac mais aussi une petite start-up française, In-Cell-Art, fondée par le Prix Nobel de chimie Jean-Marie Lehn et le spécialiste des vaccins ribonucléiques Bruno Pitard, à la pointe des systèmes de vectorisation. Mais après cinq ans de recherche « et de vrais résultats », assure Bruno Pitard, Sanofi renonce, préférant miser sur une autre technologie, les vaccins à protéine recombinante… avant de revenir sur la piste de l’ARN messager, avec la start-up américaine Translate Bio et plusieurs longueurs de retard.

      Le pari du patron de Moderna

      Si bien que lorsque, début janvier, apparaît la menace d’une pandémie que personne n’appelle encore Covid-19, ils sont trois champions de l’ARN messager véritablement dans la course au côté des tenants de stratégies vaccinales plus classiques. Et aucun Français. Le patron de Moderna, Stéphane Bancel, exhibe certes un passeport tricolore, un diplôme de l’Ecole centrale et une première carrière chez BioMérieux. Mais le projet qu’il conduit, avec le milliard de dollars accordé par l’opération « Warp Speed » du gouvernement pour trouver au plus vite un vaccin, le soutien appuyé de Donald Trump et la collaboration du NIH, apparaît 100 % américain.

      La saga de ce Frenchie semble taillée sur mesure pour nourrir le mythe de cette Amérique, terre de tous les paris. Et en cette année 2011, quitter le confort de son fauteuil de DG de BioMérieux pour se consacrer à une technologie émergente en est assurément un. « Le monde entier pensait qu’il était impossible de créer un médicament à partir d’ARN messager », résume-t-il. Pour lui, l’aventure a commencé un soir glacé de février. Noubar Afeyan, le fondateur de Flagship, l’un des fonds d’investissement les plus en vue des sciences de la vie et qu’il connaît de longue date, tient à lui montrer les résultats obtenus par des chercheurs d’Harvard. « Ils avaient injecté dans le muscle d’une souris de l’ARN messager codant pour l’EPO humaine, et montré que cette hormone circulait ensuite bien dans son sang, se souvient Stéphane Bancel. Je lui ai dit : “Ce n’est pas possible”. Il m’a répondu : “Si, si, regarde, ils ont répété l’expérience.” »

      L’homme d’affaires lui propose de monter à bord de la start-up qu’il vient de fonder avec les deux scientifiques d’Harvard Derrick Rossi et Robert Langer. « J’anticipais les centaines de médicaments qu’il serait possible de créer avec cette technologie, notamment pour des maladies incurables aujourd’hui », raconte Stéphane Bancel. Quand il sort du bureau de Noubar Afeyan, face au Massachusetts Institute of Technology (MIT) à Cambridge, il rentre à pied, songeur, en empruntant le Longfellow Bridge, qui le ramène chez lui à Boston. « Ma femme m’a demandé : “C’est risqué ?” Je lui ai dit : “Ça a 5 % de chance de réussir.” » Il signe malgré tout.

      La première année, Moderna s’efforce de rester sous le radar : rien ne filtre de ses travaux ni de ses résultats. « Nous étions méfiants, nous avions peur qu’en montrant nos progrès d’autres se mettent à courir après notre technologie », explique Stéphane Bancel. A l’époque, seuls les investisseurs, tenus au secret par un accord de confidentialité, sont informés des avancées : de premières expériences concluantes chez le singe et une étude de toxicité chez le rat, deux modèles animaux classiques. Cette preuve de concept, comme on dit dans le jargon, convainc début 2013 l’un des géants pharmaceutiques, le britannique AstraZeneca. Il signe à Moderna un chèque de 240 millions de dollars – « payés en cash le jour de la signature » – pour développer différentes thérapies à base d’ARN messager.

      Mais Moderna, nous l’avons vu, a un talon d’Achille : elle ne dispose alors pas du brevet sur la technologie conçue par UPenn pour fabriquer un ARN messager inoffensif pour l’organisme. Ses scientifiques espèrent initialement faire aussi bien, mais toutes les pistes explorées finissent en impasse. « On voyait bien que la technologie de UPenn était meilleure, mais on ne comprenait pas pourquoi », reconnaît aussi Stéphane Bancel. Il finira par débourser 75 millions de dollars en 2018 (63 millions d’euros) pour obtenir une licence, que son concurrent BioNTech acquerra aussi.

      En parallèle de ses partenariats avec des géants des secteurs – AstraZeneca, mais aussi Merck –, Moderna conclut des accords avec les institutions qui comptent dans le domaine des maladies infectieuses : la Barda et la Darpa, les services de recherche des départements de la santé et de la défense des Etats-Unis ; la Fondation Gates, au cœur de l’effort mondial sur les vaccins ; et surtout les Instituts américains de la santé, les fameux NIH.

      Le temple de la recherche médicale américaine, installé à Bethesda (Maryland), non loin de Washington, ne s’est pas fait prier pour participer à l’aventure. Il faut dire que le patron de son département des maladies infectieuses, Anthony Fauci, a guidé les premiers pas de Drew Weissman et n’a jamais perdu de vue le pionnier de UPenn. Le responsable du laboratoire de pathogenèse virale, Barney Graham, a même essayé de l’embaucher en 2000, avant de collaborer avec lui sur un vaccin contre la grippe. Au NIH, l’ARN messager est donc suivi de près.

      Une blague qui tourne au défi

      Aussi, lorsque Moderna vient trouver Barney Graham en 2014 pour lui proposer de collaborer, le chercheur n’hésite pas. Avec un partage des tâches évident : au NIH la conception de l’antigène, cette protéine qui déclenche la production d’anticorps par le système immunitaire ; Moderna s’occupera du reste, de la fabrication de l’ARN et de son acheminement vers les cellules. Un vaccin expérimental contre le virus respiratoire syncytial (RSV) est mis en chantier, puis, en 2016, un vaccin contre Zika. « Le niveau de réponse immunitaire était déjà impressionnant », se souvient Barney Graham. En 2017, enfin, les deux parties lancent un programme de préparation aux pandémies virales liées aux maladies émergentes. Parmi elles, les nipavirus mais aussi les coronavirus.

      En septembre 2019, lors de la revue annuelle des différents projets au siège du NIH, Stéphane Bancel arrive triomphant avec de nouvelles données cliniques. Il annonce : « Avec notre technologie, il nous suffit de soixante jours pour mettre au point un vaccin et démarrer un essai clinique. » « Tout le monde s’est mis à rigoler », s’amuse-t-il. La blague tourne cependant vite au défi. Sûr de lui, le chef d’entreprise propose à Anthony Fauci de lui envoyer la séquence d’un nouveau MERS, le coronavirus du syndrome respiratoire du Moyen-Orient, et de « mettre en marche le chrono » jusqu’à réception des vaccins qui doivent servir à la première phase des essais cliniques. Le vétéran des maladies infectieuses lui répond « Chiche ! » et l’exercice est programmé pour le deuxième trimestre de 2020.

      L’équipe est entre-temps rattrapée par la réalité. C’est pendant ses vacances dans le sud de la France, au lendemain du réveillon, que Stéphane Bancel lit pour la première fois dans le Wall Street Journal un article sur une nouvelle maladie respiratoire en Chine. Il le photographie et l’envoie à Barney Graham. « Je lui ai demandé : “C’est quoi ce truc ? !” Et il m’a répondu : “On ne sait pas encore, cela fait deux jours qu’on est dessus.” »

      Au Forum économique de Davos, du 21 au 24 janvier, Stéphane Bancel commence à comprendre que le virus ne menace pas seulement la Chine mais toute la planète. Deux infectiologues l’alertent sur la contagiosité du virus. « Il était clair que le R0 [le taux de reproduction de base du virus] était très élevé », relate-t-il. Il tape « Wuhan » sur Google Maps, puis sur Wikipedia, alarmé de découvrir que ce nouveau coronavirus se propage sans contrôle dans cette ville industrielle de 11 millions d’habitants. La liste des vols directs depuis la capitale du Hubei vers le reste du monde ne lui laisse guère de doute : « Le virus a déjà commencé à voyager partout. »

      Une mise au point express

      Attendu au conseil d’administration de la société Qiagen en Allemagne, il s’excuse et prend un vol pour Washington, où une réunion de crise est organisée avec toute l’équipe du NIH. Les équipes de Moderna travaillent déjà depuis le 13 janvier sur un candidat vaccin, mais impossible d’avancer sans l’aide de Barney Graham, qui a conçu l’antigène à présenter au système immunitaire. Le 24 février, Moderna envoie au NIH ses premiers lots cliniques. Quarante-deux jours se sont écoulés, du jamais-vu.

      De l’autre côté de l’Atlantique, BioNTech fait vite figure de premier challenger. Parce qu’il a, contrairement à CureVac, lui aussi payé au prix fort une licence pour exploiter l’ARN modifié inventé par Katalin Kariko, mais aussi parce qu’il a réagi immédiatement. « Ugur a tout de suite pris au sérieux le virus venu de Chine, se souvient celle qui occupe désormais le poste de vice-présidente. Il a dit à tout le staff que la pandémie n’épargnerait pas l’Allemagne, que c’était une occasion mais surtout un devoir de montrer ce que pouvait faire notre technologie. Et il a basculé tout notre programme de vaccination dessus. »

      Depuis 2017, la start-up orientée sur le cancer s’est diversifiée, en même temps qu’elle se cherchait des partenaires. Ugur Sahin a acquis la conviction que l’ARN messager peut bouleverser le traitement des maladies infectieuses. Mais aussi leur prévention. Il se tourne vers Pfizer. Pour le docteur Sahin, le géant pharmaceutique américain (88 000 employés) dispose d’une solide force de frappe mais aussi d’un atout particulier : la responsable de son département vaccin, Kathrin Jansen, est allemande elle aussi. On la dit intraitable, lui apprécie son scepticisme affiché et les questions pointues qu’elle lui adresse. Le courant passe. « Cette technologie n’avait pas encore fait ses preuves, a-t-elle raconté au Wall Street Journal. Mais potentiellement, elle avait tout pour faire de meilleurs vaccins contre la grippe. » Or la grippe, avec ses mutations constantes, exige une nouvelle injection chaque année, ce qui en fait un marché de choix.

      Accord conclu août 2018. L’excellence technique de l’un, l’expérience industrielle de l’autre : le projet avance vite et un essai clinique est programmé pour 2020. Jusqu’à l’entrée en scène du nouveau virus en couronne. La moitié des 1 500 employés de BioNTech s’y consacrent. Ils étudient le génome envoyé par les Chinois, sélectionnent les meilleures cibles, celles capables de créer la réponse immunitaire la plus performante, les ARN les plus prometteurs, et retiennent vingt formules, puis quatre. Mais comment s’attaquer seul à une pandémie qui devient mondiale ? Alors Sahin rappelle Kathrin Jansen début mars et lui propose une collaboration. Partage des coûts de développement restants, partage des bénéfices, mais BioNTech conservera la propriété exclusive du produit. La réponse est immédiate et positive. L’accord est rendu public le 18 mars.

      La suite est mieux connue. Pendant tout le printemps, Moderna caracole en tête. On évoque son duel avec l’autre favori, le vaccin d’AstraZeneca et de l’université d’Oxford, conçu à partir d’une technologie qui a fait ses preuves : celle dite du vecteur viral. Pfizer s’est plié à la stratégie de BioNTech, que résume Katalin Kariko : « Ne communiquer que quand on a quelque chose à dire. Et encore… » (Ugur Sahin n’a jamais répondu aux demandes d’entretien du Monde). Le 27 juillet pourtant, le duo américano-allemand se lance dans la phase 3 de ses tests cliniques, cet examen à grande échelle de l’efficacité de son produit, le même jour que Moderna. Au terme de ces essais, ce dernier a annoncé lundi 30 novembre avoir déposé une demande d’autorisation d’urgence auprès de la FDA américaine et l’Agence européenne du médicament. Pfizer et BioNTech l’avaient devancé auprès de l’agence américaine et espèrent que les premières vaccinations pourront débuter au Royaume-Uni le 7 décembre. Adversaires, sur le terrain industriel et commercial. Mais pour la science et vraisemblablement pour la santé humaine, ils viennent d’écrire ensemble une impressionnante page d’histoire.

    • L’aventure scientifique des vaccins à ARN messager, 14 DÉCEMBRE 2020, MARC GOZLAN
      https://www.lemonde.fr/blog/realitesbiomedicales/2020/12/14/laventure-scientifique-des-vaccins-a-arn-messager

      Drew Weissman et Norbert Pardi abordent cette question dans un ouvrage intitulé DNA Vaccines (Humana Press, avril 2020). Selon eux, l’ARN n’a aucun moyen connu lui permettant de s’intégrer dans l’ADN, à moins qu’il ne soit préalablement « rétrotranscrit » en ADN. Ces experts soulignent que cette possibilité, théorique, nécessiterait que la cellule possède l’enzyme transcriptase inverse, capable de copier l’ARN en ADN, comme lors de l’infection par un rétrovirus (par exemple, le virus du sida) ou à partir de séquences d’ADN correspondant à des éléments transposables (rétrotransposons).

      Cette hypothèse impliquerait donc forcément la survenue d’une étape supplémentaire, jugée improbable, et ce d’autant plus que tout ARN est rapidement dégradé après avoir été traduit en protéine. Même si la copie ADN de l’ARN s’intégrait dans le génome, elle serait de tout façon dépourvue des séquences lui permettant de provoquer une surexpression de gènes à proximité du site d’intégration, soulignent les chercheurs. Et de conclure que des recherches sont nécessaires pour déterminer si une intégration de l’ARN dans le génome pourrait se produire en cas d’infection rétrovirale.

      le premier et le plus complet des articles publiés dans la presse (un blog...) française

      #Katalin_Karikó #vaccin_anti_cancer #infectiologie #H1N1 #Ebola