• Tungstène - Edition du soir Ouest France - 15/01/2016
    http://www.ouest-france.fr/leditiondusoir/data/659/reader/reader.html?t=1452878399102

    Comment ça marche, l’incandescence 2.0 ?

    Ce sont les nanotechnologies qui pourraient aider au retour du tungstène. Dans leur document, poétiquement intitulé « résurrection de la source à incandescence », l’équipe du MIT décrit le fonctionnement de son ampoule : un dispositif entourant le filament permet de capter le rayonnement infrarouge pour le renvoyer vers le filament, où il est absorbé et réémis sous forme de lumière. Du recyclage à la source, en quelque sorte.

    • L’annonce du MIT
      A nanophotonic comeback for incandescent bulbs? | MIT News
      http://news.mit.edu/2016/nanophotonic-incandescent-light-bulbs-0111

      Traditional light bulbs, thought to be well on their way to oblivion, may receive a reprieve thanks to a technological breakthrough.

      Et le papier original
      Tailoring high-temperature radiation and the resurrection of the incandescent source : Nature Nanotechnology : Nature Publishing Group
      http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2015.309.html

      In solar cells, the mismatch between the Sun’s emission spectrum and the cells’ absorption profile limits the efficiency of such devices, while in incandescent light bulbs, most of the energy is lost as heat. One way to avoid the waste of a large fraction of the radiation emitted from hot objects is to tailor the thermal emission spectrum according to the desired application. This strategy has been successfully applied to photonic-crystal emitters at moderate temperatures, but is exceedingly difficult for hot emitters (>1,000 K). Here, we show that a plain incandescent tungsten filament (3,000 K) surrounded by a cold-side nanophotonic interference system optimized to reflect infrared light and transmit visible light for a wide range of angles could become a light source that reaches luminous efficiencies (∼40%) surpassing existing lighting technologies, and nearing a limit for lighting applications. We experimentally demonstrate a proof-of-principle incandescent emitter with efficiency approaching that of commercial fluorescent or light-emitting diode bulbs, but with exceptional reproduction of colours and scalable power. The ability to tailor the emission spectrum of high-temperature sources may find applications in thermophotovoltaic energy conversion and lighting.