The problem with neurofeedback is in fact as old as #placebo itself. In double-blinded, placebo-controlled neurofeedback studies, neither the researcher nor the participant is aware of whether they are receiving a true intervention. When no one knows who is supposed to experience the clinical effect, the behavioural differences between placebo and neurofeedback intervention often disappear.
Even more impressively (or disturbingly), it seems that the mind can change the brain by just thinking it might be undergoing an intervention . New studies showed that giving people ‘sham’ neurofeedback could have the same effect as the real thing. When people believed they were undergoing an intervention, they usually reported feeling that it had a noticeable effect. Sometimes, the brain activity in these individuals also began to show the brain being retrained as intended: not only would participants of sham-neurofeedback experiments report reduced chronic pain, for example, but their insulas (the region of the brain directly tied to the experience of pain) would show a reduction of activity.
Since the early 2010s, neurofeedback has been fraught with this additional controversy. Researchers began to wonder whether all neurofeedback simply pertains to some deep, powerful capacity of the brain to change itself – and it needs no real technology to do it.
The placebo studies raise the question of whether you can really disentangle the mind from the brain. The Hollywood blockbuster Inception (2010) plays with a similar idea: in the film, the hero (played by Leonardo DiCaprio) alters people’s thoughts by jumping into their minds as they dream.
A new wave of research is focused on a brain imaging technique so similar that its advocates have called it ‘incepted neurofeedback’. These studies show it’s possible to implant thoughts into people’s brains without them being aware of it. In one case, researchers scanned participants to get a ‘baseline’ reading of their brain activity, and then subjected them to several days of neurofeedback training. When subjects saw black stripes on the screen, they were instructed to ‘somehow regulate [their] brain activity’ to make a grey circle in the centre of the screen get as large as possible. At the end, they got paid money depending on how successful they were. What they weren’t told is that the size of the circle was related to patterns of brain activation that corresponded to seeing the colour red.
After doing this hundreds of times, people were asked what helped them get high scores. No one mentioned colours; some mentioned zebras, violent acts or performing in gymnastics tournaments. In subsequent tests, though, the participants were more likely to see the colour red when presented with an image than those who didn’t receive neurofeedback. Without even knowing it, the visual mark of ‘red’ had been implanted in their minds.