#large_language_models

  • L’#IA générative a le potentiel de détruire la planète (mais pas comme vous le pensez)

    Le risque premier avec l’#intelligence_artificielle n’est pas qu’elle s’attaque aux humains comme dans un scénario de science-fiction. Mais plutôt qu’elle participe à détruire notre #environnement en contribuant au #réchauffement_climatique.

    La course à l’intelligence artificielle (IA) s’intensifie. Le 9 février, veille du sommet de l’IA à Paris, Emmanuel Macron promettait 109 milliards d’euros d’investissements publics et privés dans cette technologie pour les années à venir. Il entend concurrencer les États-Unis sur ce terrain, en faisant référence au programme « #Stargate » promis par Donald Trump, qui prévoit des dépenses de 500 milliards de dollars (484 milliards d’euros) dans l’IA aux États-Unis.

    Des deux côtés de l’Atlantique, ces centaines de milliards seront principalement investis dans la construction de nouveaux #centres_de_données pour entraîner puis faire fonctionner les outils d’intelligence artificielle. Pourtant, les #impacts_environnementaux de ces « #data_centers », mis de côté dans ce sprint à l’IA, présentent un danger réel pour notre planète.

    « Plus grand est le modèle, mieux c’est »

    L’ouverture au public de l’agent conversationnel d’#OpenAI, #ChatGPT, en novembre 2022 a marqué un tournant dans les usages de l’intelligence artificielle. Depuis, des dizaines d’#IA_génératives sont accessibles avec la capacité de résoudre des problèmes variés, allant de la rédaction d’un email professionnel à des suggestions de recette de tartes, en passant par des lignes de code informatique.

    Ces #grands_modèles_de_langage (en anglais, « #Large_language_models », ou #LLM), avec un grand nombre de paramètres, se sont développés ces dernières années, comme #Gemini de #Google, #Le_Chat de l’entreprise française #MistralAI ou #Grok de X. D’autres modèles permettent de créer de toutes pièces des images – on pense à #Dall-E ou #Midjourney –, des vidéos ou des chansons.

    Si leur utilisation est gratuite (bien que des versions payantes existent), le prix est payé non seulement par les utilisateurs dont les #données_personnelles sont captées, mais aussi par les populations les plus vulnérables au changement climatique. Avec leurs dizaines voire centaines de milliards de paramètres et des terabytes de #données pour les alimenter, faire tourner les systèmes d’IA générative demande beaucoup de #puissance_de_calcul de #serveurs, situés dans des centres de données. Donc beaucoup d’#électricité.

    Ces chiffres ne font qu’augmenter à mesure que les modèles se perfectionnent. « Aujourd’hui, l’idée dominante dans l’industrie des modèles génératifs est : "Plus grand est le modèle, mieux c’est" », résument les chercheurs Paul Caillon et Alexandre Allauzen dans The Conversation. Malgré un manque de transparence des entreprises, la consommation d’électricité de leurs modèles et leur impact climatique ont fait l’objet d’estimations par nombre de chercheurs et institutions.
    Combien consomme une requête ChatGPT ?

    On sait déjà que la version de ChatGPT sortie en mars 2023, #GPT-4, a demandé plus de puissance de calcul que la précédente. Le Conseil économique et social (Cese), dans un avis de septembre 2024, cite OpenAI et explique : entraîner la troisième version de son modèle de langage a demandé l’équivalent de l’énergie consommée par 120 foyers américains. La version suivante a multiplié par 40 cette consommation, avoisinant la consommation de 5000 foyers.

    Selon une étude, début 2023, une requête ChatGPT consommait environ 2,9 Wh d’électricité, soit presque dix fois plus qu’une simple recherche Google (0,3 Wh). D’autres études estiment l’#impact_carbone d’une requête à ChatGPT autour de 4 à 5 grammes d’équivalent CO2.

    Produire une #image, c’est pire. La startup #HuggingFace, à l’origine de l’#IA_Bloom, a été l’une des premières à estimer les #émissions_de_gaz_à_effet_de_serre de ces modèles. Dans une étude co-écrite avec l’Université états-unienne de Carnegie-Mellon, elle montre que la génération d’image est de loin la plus polluante des requêtes formulées à une IA générative (l’étude ne prend pas en compte les vidéos).

    Pour donner un ordre d’idée, générer 1000 images correspondrait à conduire environ 7 kilomètres avec une voiture essence. En comparaison, 1000 textes générés équivalent à moins d’un 1 mètre parcouru avec un même véhicule. Mais leur utilisation massive rend cet impact non négligeable. Selon le PDG d’OpenAI Sam Altman,, à la fin de l’année 2024, plus d’un milliard de requêtes étaient envoyées à ChatGPT par jour.

    En janvier 2023, soit quelques mois après qu’elle a été rendue accessible au public, ChatGPT avait accumulé 100 millions d’utilisateurs. Selon une estimation de Data for Good, rien que ce mois-là, l’utilisation de ChatGPT aurait pollué à hauteur de 10 113 tonnes équivalent CO2 – soit environ 5700 allers-retours en avion entre Paris et New York.

    En décembre 2024, selon son PDG, le service avait atteint les 300 millions d’utilisateurs… par semaine. Et ce, avec une version bien plus performante – donc bien plus polluante – que la précédente.

    De plus en plus de personnes utilisent l’IA au quotidien, et pour de plus en plus de tâches. Installés dans nos smartphones, accessibles en ligne ou même intégrés dans les frigos haut de gamme, les outils d’intelligence artificielle sont presque partout.

    Une explosion de la consommation d’électricité

    Selon l’Agence internationale de l’énergie, les centres de données représenteraient aujourd’hui environ 1 % de la consommation d’électricité mondiale. Mais cette consommation risque d’augmenter avec les usages croissants et le développement de nouveaux modèles d’IA. Selon l’agence, la consommation des centres de données pour l’IA et les #cryptomonnaies a dépassé 460 TWh en 2022. C’est autant que la consommation de la France. D’ici l’année prochaine, selon les scénarios, cette demande en électricité pourrait augmenter de 35 % (160 TWh en plus) à 130 % (590 TWh) ! « Soit l’équivalent d’au moins une Suède et au maximum une Allemagne » de plus dans le monde en quelques années.

    Une autre étude de l’ONG Beyond Fossils Fuels est encore plus alarmiste : « Au cours des six prochaines années, l’explosion de la demande en énergie des centres de données dans l’UE [Union européenne] pourrait entraîner une hausse de 121 millions de tonnes des émissions de CO2, soit presque l’équivalent des émissions totales de toutes les centrales électriques au gaz d’Italie, d’Allemagne et du Royaume-Uni en 2024 combinées » écrit l’ONG en février 2025.

    Les grandes entreprises de la tech cherchent à faire oublier leurs promesses écologiques. Selon le Financial Times, dans un article d’août 2024, les Gafam tentent de remettre en cause les règles de « zéro carbone net » qui leur permettent de compenser leurs émissions de CO2 par le financement d’énergies renouvelables (des règles déjà critiquées pour leur mode de calcul qui dissimule une grande partie de l’impact carbone réel de leurs consommation d’électricité).

    « Ces géants de la technologie sont sur le point de devenir les plus gros consommateurs d’énergie de demain, dans leur course au développement d’une intelligence artificielle énergivore », écrit le média britannique. Les émissions de gaz à effet de serre de Google augmentent par exemple de 13% par an (selon des chiffres de 2023). Une hausse notamment portée par l’augmentation de la consommation d’énergie de ses centres de données. Les émissions de Microsoft ont bondi de 29 % entre 2020 et 2023.

    Des investissements massifs aux dépens des populations

    Les chefs d’État des États-Unis comme de la France ont pourtant annoncé des investissements massifs dans l’IA pour les années à venir. L’Union européenne, par la voix d’Ursula von der Leyen, a également annoncé un investissement de 200 milliards en partenariat avec de grands groupes.

    Dans les trois cas, ces centaines de milliards d’euros sur la table serviront majoritairement à construire des centres de données pour permettre l’entraînement puis l’utilisation de ces technologies. En France, en amont du sommet de l’IA, le fonds canadien Brookfield a annoncé investir 15 milliards d’euros dans la construction de centres de données, tandis que les Émirats arabes unis ont mis entre 30 et 50 milliards sur la table pour la construction d’un centre de données géant.

    Il est peu probable que cette consommation d’électricité massive ne se fasse pas au détriment des populations. En Irlande, les centres de données monopolisent une part grandissante de l’électricité du pays, ils représentent aujourd’hui plus de 20 % de sa consommation. Cette situation crée des tensions avec les habitants, qui voient leurs factures augmenter alors que la consommation des ménages n’augmente pas.
    Des engagements « durables » non contraignants

    Aux États-Unis, raconte un article de Vert, Microsoft va rouvrir le premier réacteur de la centrale nucléaire de Three Mile Island, site d’un accident en 1979 qui avait irradié toute cette partie de la Pennsylvanie et traumatisé les habitants. Les géants de la Tech – Google, Amazon et Microsoft en tête – cherchent également à investir dans les « petits réacteurs modulaires » nucléaires, en cours de développement, pour alimenter leurs centres de données, ce qui pose la question de la sûreté d’une multitude de petites installations nucléaires face au risque d’accidents. Autre conséquence : le retour en grâce du charbon, fortement émetteur en gaz à effet de serre. Dans l’État de Géorgie, la promesse faite il y a trois ans de fermer toutes ses centrales à charbon a été abandonnée pour répondre au pic de demande d’électricité créé par les centres de données.

    Face à ces risques pour les populations locales comme pour celles les plus vulnérables au changement climatique dans le monde entier, les actions semblent faibles. Une déclaration d’intention a été signée à l’issue du sommet de l’IA, notamment avec l’Inde et la Chine. Il prévoit entre autres la création d’un observatoire de l’impact énergétique de l’IA, sous la responsabilité de l’Agence internationale de l’énergie. Il planifie également la création d’une « coalition pour l’IA durable » avec de grandes entreprises du secteur.

    Ces engagements en matière d’intelligence artificielle signés par les États et les entreprises présentes ne sont pas contraignants, et ne sont pas tournés vers l’action immédiate. De plus, ni le Royaume-Uni ni les États-Unis, qui concentre un tiers des centres de données du monde, n’ont signé ce texte.

    https://basta.media/l-ia-generative-a-le-potentiel-de-detruire-la-planete-mais-pas-comme-vous-l

    #environnement #climat #changement_climatique #pollution #visualisation #infographie

    • Se contenter de « calculer » la consommation énergétique directe de l’IA, c’est omettre de « calculer » ses effets induits, ses conséquences systémiques, puisque « grâce » à l’IA, on peut faire plus de croissance générale. Sans même parler des effets rebonds tous azimuts... Par exemple, on peut utiliser l’IA pour produire un article de blog. Cette utilisation d’IA consomme une unité d’énergie mais elle a aussi permis d’augmenter le volume de contenu qui lui même consomme de l’énergie sur les serveurs.

  • L’accélération de l’#IA pose déjà des questions de #pénuries d’#eau et d’#énergie

    Le Royaume-Uni comme les États-Unis viennent de présenter de nouveaux plans pour soutenir la mise en place d’#infrastructures pour l’IA dans leurs territoires. Mais actuellement, aux États-Unis, de nouvelles #centrales au gaz sont ouvertes pour répondre aux demandes d’énergie de l’IA. Au Royaume-Uni, l’implantation par le gouvernement de sa « première zone de croissance de l’IA » près d’un nouveau réservoir pose la question des priorités d’#accès_à_l'eau.

    Ce mardi 14 janvier et six jours avant la passation de pouvoir à Donal Trump, Joe Biden a publié un décret pour l’investissement des États-Unis dans des infrastructures. « Je signe aujourd’hui un décret historique visant à accélérer la vitesse à laquelle nous construisons la prochaine génération d’infrastructures d’IA ici aux États-Unis, de manière à renforcer la compétitivité économique, la sécurité nationale, la sécurité de l’IA et l’énergie propre », affirme-t-il.

    Selon certaines estimations, la consommation énergétique de l’IA devrait être multipliée par 4 à 9 d’ici 2050 et la consommation d’énergie des #data_centers aux États-Unis est déjà très carbonée.

    Le #gaz comme source d’énergie future aux États-Unis

    Mais, malgré les différentes annonces d’investissements dans le nucléaire par les géants du numérique, les États-Unis seraient plutôt à l’aube d’un boom de la construction de #centrales_électriques au gaz naturel, selon le Financial Times. Le journal économique américain explique que « les grandes entreprises technologiques se tournent vers les #combustibles_fossiles pour répondre aux énormes besoins en #électricité de la révolution de l’intelligence artificielle, ce qui met en péril les objectifs en matière de climat ».

    Le journal cite le cabinet de conseil en énergie #Enverus qui prévoit qu’au moins 80 centrales électriques au gaz seront construites aux États-Unis d’ici à 2030. Le Financial Times estime la capacité supplémentaire de ces centrales à 46 gigawatts, « soit la taille du réseau électrique norvégien et près de 20 % de plus que ce qui a été ajouté au cours des cinq dernières années ». Et selon Corianna Mah, analyste pour Enverus interrogée par le journal, « le gaz croît en fait plus rapidement aujourd’hui, et à moyen terme, que jamais auparavant ». Aucun des projets qu’Enverus a listés ne prévoit d’être équipé d’un système de capture de dioxyde de carbone.

    Approvisionnement de l’eau dans un lac de barrage prévu pour la population britannique

    De son côté, le gouvernement du Royaume-Uni vient d’annoncer une stratégie nationale pour faire de son pays un leader en matière d’intelligence artificielle. Dedans, il prévoit entre autres des « Zones de croissance de l’IA » (#IA_growth_zones), « des zones bénéficiant d’un meilleur accès à l’électricité et d’un soutien pour les autorisations de planification, afin d’accélérer la mise en place d’une infrastructure d’IA sur le sol britannique », comme l’explique le communiqué du Secrétariat d’État à la science, à l’innovation et à la technologie.

    Mais des questions se posent sur l’emplacement prévu de la première « #zone_de_croissance ». Situé à Culham, au siège de l’Autorité britannique de l’énergie atomique (UKAEA), cet endroit est aussi celui du premier nouveau lac de barrage construit depuis 30 ans aux Royaume-Uni, « qui était censé fournir de l’eau aux habitants du sud-est de l’Angleterre, qui souffre d’un grave problème d’approvisionnement en eau », explique le Guardian.

    Le journal britannique souligne que cette région est celle qui, selon l’agence environnementale nationale, est la plus sensible du pays aux manques d’eau. Entre les réserves d’eau disponibles et la demande attendue sans compter les data centers, le sud-est du pays sera confronté à un déficit potentiel de plus de 2,5 milliards de litres par jour d’ici 2050.

    Du côté énergétique, le gouvernement britannique a mis en place un Conseil de l’énergie de l’IA qui doit travailler avec les entreprises du secteur pour « pour comprendre les demandes et les défis énergétiques » liés à l’intelligence artificielle. Il parie encore sur la possibilité de mettre en place des #SMR (#réacteurs_nucléaires_modulaires).

    « L’expansion de l’IA a été un sujet de préoccupation pour #National_Grid [entreprise de distribution de l’électricité et du gaz notamment au Royaume-Uni], mais la vitesse à laquelle la demande de calcul de l’IA augmente a pris tout le monde par surprise et, à moins que nous n’équilibrions correctement les compromis ci-dessus, avec des politiques appropriées, toute l’énergie verte et bon marché dont nous disposons sera utilisée par les grandes entreprises technologiques, ce qui privera les familles qui souffrent déjà de la pauvreté énergétique », explique Gopal Ramchurn, chercheur de l’université de Southampton, interrogé par le Guardian.

    La #France s’appuie sur son #nucléaire, mais des tensions sont présentes

    Quant à la France, l’instabilité politique ne permet pas d’y voir très clair dans la politique du pays concernant l’IA. Lors de son discours de politique générale, le premier Ministre François Bayrou a évoqué l’IA lorsqu’il a annoncé la création d’un fonds spécial « entièrement [consacré] à la réforme de l’État ». Ce fonds sera financé par des actifs « en particulier immobiliers, qui appartiennent à la puissance publique, de façon à pouvoir investir, par exemple, dans le déploiement de l’intelligence artificielle dans nos services publics ».

    Lors de ses vœux, le Président de la Région Normandie Hervé Morin a évoqué la volonté de sa région d’être référente en matière d’intelligence artificielle et d’accueillir des data centers sur trois ou quatre points du territoire. Il a mis en avant « son potentiel énergétique décarboné », faisant référence aux centrales nucléaires de Flamanville, Paluel et Penly et à l’EPR situé lui aussi à Flamanville.

    Mais RTE tirait récemment un signal d’alarme sur le foisonnement de projets de data centers prévus pour l’IA. Si l’entreprise affirmait en novembre à l’Usine Nouvelle avoir « assez d’électricité pour répondre à la croissance des besoins », elle pointait aussi du doigt une « course à la capacité » et un manque de planification :« plusieurs projets ont été abandonnés en raison de tensions sur la distribution de l’énergie », ajoutait-il.

    https://next.ink/165467/lacceleration-de-lia-pose-deja-des-questions-de-penuries-deau-et-denergie

    #intelligence_artificielle #AI #énergie_nucléaire

    • Pourquoi l’IA générative consomme-t-elle tant d’énergie ?

      #DeepSeek défraye la chronique en proposant un modèle dont les #performances seraient comparables à celles des modèles préexistants, pour un coût très réduit en termes de puissance de calcul et de données, et donc une #consommation_énergétique moindre. Quand on sait que Microsoft a indiqué une hausse de 29,1 % d’émission de carbone sur l’année 2023 et que différentes grandes entreprises du numérique investissent dans des capacités de production d’électricité, le tout en lien avec l’essor de l’#IA_générative, l’enjeu est de taille. Pourquoi l’IA générative consomme-t-elle tant ? Décryptage.

      Les grands modèles de langage (Large Language Models ou LLM), comme ChatGPT (OpenAI), Gemini (Google/DeepMind) ou encore les modèles génératifs d’images comme #Midjourney, sont devenus en très peu de temps des outils incontournables avec des usages qui ne cessent de s’amplifier et de se diversifier. Il est vrai que la fluidité des échanges avec ChatGPT impressionne, et que les promesses de développement sont enthousiasmantes.

      Néanmoins, ces promesses cachent des coûts de calcul, et donc énergétiques, considérables. Or, aujourd’hui l’idée dominante dans l’industrie des modèles génératifs est : « Plus grand est le modèle, mieux c’est. » Cette compétition s’accompagne d’une croissance de la consommation énergétique et, donc, de l’empreinte écologique qui ne peut plus être ignorée et qui questionne quant à sa pérennité et sa viabilité pour la société.
      Pourquoi un tel coût ?

      Un modèle génératif de texte comme un chatbot est un ensemble de paramètres numériques ajustés à partir de données pour accomplir une tâche spécifique. L’architecture dominante s’appuie sur les « transformers ».

      Les #transformers prennent une séquence en entrée, par exemple un prompt (soit votre question), pour la transformer numériquement. En empilant les couches de transformers, le modèle multiplie ces transformations afin de construire la réponse en prolongeant son entrée. Cet empilement de couches confère au modèle son efficacité et fait croître le nombre de paramètres. C’est pourquoi un modèle tel que GPT-4 contient au moins 1 tera (1 000 milliards) de paramètres et nécessite donc au moins 2 tera octets (To) de mémoire vive pour être utilisable.

      Que ce soit pour l’entraînement, pour le stockage des données et des paramètres, ou pour le calcul d’une réponse, des infrastructures de calcul de plus en plus puissantes sont donc indispensables. En d’autres termes, contrairement à ce que l’on croit souvent, ce n’est pas juste pour entraîner le modèle que ces techniques sont très coûteuses.

      Des données émerge la « connaissance »

      Avant tout, un modèle génératif doit être « appris ». Pour cela des données (textes, images, sons, etc.) lui sont présentées à maintes reprises afin d’ajuster ses paramètres. Plus il y a de paramètres, plus la phase d’apprentissage est coûteuse en données, mais aussi en temps et en énergie.

      Ainsi, pour un LLM (grand modèle de langage), on parle par exemple de l’ordre de la dizaine de trillions de données (environ 10 trillions pour GPT-4 et 16 trillions pour Gemini) et aux alentours de trois mois de préapprentissage sur environ 20 000 puces A100 de NVIDIA pour le dernier-né d’OpenAI. Ces modèles les plus performants sont en fait une combinaison de plusieurs énormes modèles (les « Mixture of Experts »), GPT-4 étant ainsi le résultat de 16 experts de 110 milliards de paramètres, selon les rares informations disponibles.

      Après cette phase d’apprentissage, le modèle est déployé afin de répondre aux utilisateurs dans une phase dite d’« inférence ». Pour faire face à la demande (ces systèmes construits pour répondre à plusieurs personnes en même temps) avec un temps de réponse satisfaisant, le modèle est alors dupliqué sur différents clusters de calcul. Un article de recherche constate également que les architectures génératives polyvalentes consomment significativement plus d’énergie à l’inférence que les systèmes spécifiques à une tâche, même à taille de modèle équivalente.

      Ce survol des besoins en termes de calcul donne une idée des ordres de grandeur qui se cachent derrière nos interactions — qui semblent si rapides et efficaces — avec ces énormes modèles. Il permet surtout de poser différemment la question de l’évaluation de ces modèles, en y incluant la question de la soutenabilité en termes énergétiques et écologiques. Des travaux récents proposent ainsi un modèle pour évaluer les impacts environnementaux de la fabrication des cartes graphiques et une analyse multicritère des phases d’entraînement et d’inférence des modèles d’apprentissage automatique.
      Obsolescence et frugalité

      Ainsi les grands modèles génératifs nécessitent des infrastructures matérielles colossales.

      Au-delà de considérations économiques, il a été montré que passé un certain point, les gains de performances ne justifient pas une telle explosion du nombre de paramètres. Toutes les applications ne nécessitent pas d’énormes modèles et des approches plus modestes peuvent être aussi performantes, plus rapides et moins coûteuses.

      Sur le plan environnemental, l’apprentissage et l’inférence de modèles massifs ont un coût énergétique qui nécessitent réflexion. Les travaux de certains auteurs soulignent la complexité de mesurer avec précision l’empreinte carbone de ces grands modèles, tout en montrant leur impact considérable : 50,5 tonnes équivalent CO2 (CO2 eq) pour un modèle de 176 milliards de paramètres, appris en 2023… et pratiquement considéré comme obsolète aujourd’hui. Pour rappel, si un Français moyen rejette actuellement environ 10 tonnes CO2 eq par an, l’objectif à l’horizon 2050 pour respecter l’engagement des accords de Paris est d’environ 2 tonnes CO₂ eq par Français et par an.

      Quant à la phase d’inférence (ou d’utilisation, quand on pose une question à GPT), lorsqu’elle est réalisée des millions de fois par jour, comme c’est le cas pour un assistant conversationnel, elle peut engendrer un coût énergétique considérable, parfois bien supérieur à celui de l’entraînement.

      Ainsi, un outil développé en 2019 a permis d’estimer qu’une inférence de ChatGPT 3.5 produisait environ 4,32 grammes de CO2.

      À l’heure où les assistants conversationnels sont peut-être en passe de remplacer les moteurs de recherche standards (Google, Bing, Qwant), la question de son utilisation se pose, car ces derniers ont un coût 10 à 20 fois moindre (0,2 gramme de CO2 la recherche, d’après Google).

      Enfin, la concentration de pouvoir entre quelques acteurs disposant des ressources nécessaires pour développer ces modèles — data centers, données, compétences — pose des problèmes scientifiques en limitant la diversité des recherches, mais aussi stratégiques et politiques.
      Les recherches en IA frugale

      La frugalité consiste à se fixer dès le départ une enveloppe de ressources (calcul, mémoire, données, énergie) et à concevoir des modèles capables de s’y adapter. L’idée n’est pas de sacrifier les performances, mais de privilégier la sobriété : optimiser chaque étape, du choix de l’architecture à la collecte des données, en passant par des méthodes d’apprentissage plus légères, afin de réduire l’empreinte environnementale, d’élargir l’accès à l’IA et de favoriser des applications réellement utiles.

      La recrudescence de travaux de recherche sur ce thème illustre la volonté de penser l’IA sous l’angle de la sobriété. Il s’agit ainsi de replacer la pertinence, l’impact sociétal et la soutenabilité au cœur de la recherche.

      Concrètement, de nombreuses pistes émergent. Sur le plan de l’apprentissage, il s’agit d’explorer des alternatives algorithmiques au paradigme actuel, hérité du milieu des années 1980 et qui n’a jamais été remis en question alors même que les quantités de données et la puissance de calcul n’ont plus rien à voir avec celles qui prévalaient aux débuts de ces modèles.

      Ainsi, au-delà des optimisations techniques, une réflexion méthodologique de fond s’impose, tant le contexte scientifique a évolué depuis les années 1980. Cette réflexion est au cœur, par exemple, du projet Sharp, financé par le programme France 2030. L’étude d’architectures plus compactes et spécialisées est également abordée avec le projet Adapting du même programme.

      Les mathématiques appliquées peuvent jouer un rôle clé en proposant des « représentations parcimonieuses », des méthodes de factorisation, ou en optimisant l’usage de données faiblement annotées.

      Ainsi, en travaillant avec des contraintes de ressources, ces recherches visent un développement en IA plus frugal et donc durable, ainsi que plus accessible, et indépendant de l’hyperconcentration du marché. Elles limitent les externalités négatives — environnementales, éthiques, économiques — liées à la course effrénée vers le gigantisme.

      Mais pour atteindre ces objectifs, il est aussi important d’avancer sur les critères et les méthodes d’évaluations en IA : avec le paradigme dominant actuel, la dimension de frugalité peine encore à s’imposer, que ce soit du côté de la recherche ou industriel. Il ne faut d’ailleurs pas confondre la récente explosion des outils de DeepSeek avec de la frugalité, les coûts en calcul et en données étant eux aussi extrêmement élevés, avec des méthodes probablement éthiquement répréhensibles.

      Ainsi, le monde académique doit mieux intégrer cette dimension afin d’améliorer la visibilité et la valorisation des travaux qui visent la frugalité.
      L’IA que nous développons est-elle vraiment utile ?

      La frugalité en IA n’est pas un simple concept, mais une nécessité face aux enjeux actuels. Les travaux récents sur son empreinte carbone illustrent l’urgence de repenser nos méthodes. Avant même d’envisager les manières de rendre l’IA plus sobre, il est légitime de se demander si l’IA que nous développons est vraiment utile.

      Une approche plus frugale, mieux pensée et mieux orientée, permettra de construire une IA tournée vers le bien commun, s’appuyant sur des ressources maîtrisées, plutôt que sur la surenchère permanente en taille et en puissance de calcul.

      Cet article a été écrit dans le cadre de la troisième édition des Dauphine Digital Days qui a eu lieu à l’Université Paris Dauphine — PSL, du 18 au 20 novembre 2024.

      https://theconversation.com/pourquoi-lia-generative-consomme-t-elle-tant-denergie-247406

    • IA : un puits sans fond de dépenses en énergie, en #eau et en #CO2

      Emmanuel Macron veut croire que la France a « des #data_centers_propres ». Mais les dégâts environnementaux des industries numériques sont déjà tangibles (consommation d’#électricité, émissions de CO2, besoins en eau et en #minerais, conflits d’usage sur le #foncier) alors que l’idée d’une #IA_verte n’est encore qu’une promesse.

      Si le climat était une intelligence artificielle (IA), le monde serait en train de le sauver. Face au tsunami d’investissements publics et privés programmés pour ses infrastructures, il est tentant de détourner le fameux slogan : « Si le climat était une banque, ils l’auraient déjà sauvé. » Car si ces annonces financières brillent de l’or des profits à venir, elles éclipsent un problème tout aussi exponentiel : les impacts environnementaux désastreux de l’IA.

      109 milliards d’euros en France dans les prochaines années annoncés par Emmanuel Macron, ainsi qu’un projet de méga data center cofinancé par les #Emirats_arabes_unis ; 500 milliards de dollars débloqués pour #Stargate (« la porte des étoiles ») et ses futurs data centers aux États-Unis par #OpenAI et #SoftBank ; 65 milliards de dollars par #Meta, la maison-mère de #Facebook, qui a par ailleurs démoli un centre de données en cours de construction pour le remplacer par un autre adapté aux besoins de l’IA. #Microsoft veut débourser 80 milliards de dollars en divers équipements techniques dans le même objectif.

      Secteur industriel en plein boom ou au bord d’une bulle financière, l’avenir le dira. Mais l’#empreinte_carbone et matérielle de la ruée mondiale vers les #données_numériques est, elle, déjà palpable. Une requête via #ChatGPT consomme dix fois plus d’électricité qu’une recherche Google, selon l’Agence internationale de l’énergie (AIE). Ses expert·es anticipent une explosion de la demande énergétique, équivalente à la consommation actuelle d’un pays comme la Suède ou même l’Allemagne – selon la place du curseur sur la fourchette d’estimation.

      Requêtes énergivores

      Pourquoi ? Deux explications principales semblent faire consensus parmi les spécialistes. D’abord, des raisons strictement matérielles : les #serveurs configurés pour l’#IA_générative utilisent beaucoup plus de courant électrique que leurs prédécesseurs. Notamment parce qu’ils utilisent des puces spécifiques, les #GPU (« # graphics_processing_unit », des #processeurs_graphiques), « qui ont des capacités de #calcul nécessaires à la #technologie d’apprentissage qui permet aux modèles d’IA d’améliorer leur performance, explique Loup Cellard, chercheur associé au médialab de Sciences Po. Une requête sur ChatGPT demande plus de mémoire vive et plus de capacité de #stockage qu’une simple recherche sur un moteur internet ».

      Or, chacun de ces services correspond à des besoins matériels supplémentaires. « Faire une requête ChatGPT pour demander un truc que pourrait donner Google, c’est comme couper votre baguette de pain avec une scie électrique : ça marche mais ça n’est pas la meilleure utilisation que vous pouvez faire des ressources », résume Sylvain Waserman, président de l’Agence de l’environnement et de la maîtrise de l’énergie (Ademe), selon qui « il serait absurde de s’opposer à l’IA et il est irresponsable de ne pas s’intéresser à ses impacts ».

      La phase d’entraînement des machines est plus intense en énergie à l’unité, car elles doivent être beaucoup stimulées pour ramasser et distribuer les données. Mais c’est bien sûr celle des usages qui finalement est la plus énergivore, car le nombre des utilisateurs de la technologie dépasse de loin celui des ingénieur·es qui la développent.

      Ainsi « la migration vers le cloud, l’essor de l’IA générative et les #cryptomonnaies sont les trois principaux vecteurs de la reconfiguration en cours des impacts des centres informatiques » selon l’association GreenIT, dont les rapports font référence. Les data centers, les cryptomonnaies et l’intelligence artificielle ont consommé près de 2 % de l’électricité mondiale en 2022, selon l’AIE. Cela peut sembler dérisoire. Mais la quantité d’électricité qu’ils consomment pourrait doubler en 2026 (par rapport à 2022). Il existe aujourd’hui plus de 8 000 centres de données dans le monde, principalement situés aux États-Unis.

      Les data centers adaptés aux besoins de l’intelligence artificielle consomment 18 % de l’électricité des centres informatiques, alors qu’ils n’en représentent que 2 % de la quantité dans le monde, selon les dernières estimations de GreenIT. Ils émettent près de 4 % de tout le CO2 de la filière numérique, soit déjà plus que l’ensemble des ordinateurs portables en circulation. Selon #France_Datacenter, le lobby du secteur, la demande supplémentaire liée à l’IA générative en France d’ici à dix ans sera de 1 gigawatt, l’équivalent d’un petit réacteur nucléaire.

      Mais les opérateurs de data centers n’aiment pas trop aborder le sujet de leurs impacts environnementaux. Interrogé par Mediapart sur ses besoins en électricité pour soutenir le développement de son activité, #Amazon_Web_Service (#AWS), la branche data center du Gafam, répond par la liste très détaillée de ses investissements et créations d’emplois à venir, sans un mot sur ses besoins énergétiques.

      « Avec l’IA, on pourrait changer d’échelle d’ici à 2030 en termes d’impact environnemental car ses serveurs ne représentent que 2 % des équipements et la demande est très importante pour les années à venir, constate Cécile Diguet, spécialiste des infrastructures numériques. Aujourd’hui, le numérique est un des secteurs qui nous mettent dans le rouge quant au respect des limites planétaires : consommation d’énergie, de ressources en minerais et terres rares, en eau. Les technologies et le numérique prétendent régler des problèmes qu’ils aggravent. Grâce à une IA, on pourra peut-être traiter une base de données plus vite ou mieux gérer la complexité de réseaux d’électricité. Mais en définitive, l’accumulation perpétuelle de matériels et de data centers fait que tous les gains en énergie sont consommés derrière. Le numérique n’est pas source de sobriété. »

      C’est particulièrement vrai concernant les quantités de minerais utilisés pour fabriquer les équipements (centres de données mais aussi puces et autres composants) nécessaires à l’IA – et les déchets en résultant. Ils sont la « colonne vertébrale » de l’intelligence artificielle, selon la chercheuse états-unienne Kate Crawford, qui appelle à créer un nouvel atlas du monde pour visualiser les besoins matériels, financiers et politiques de l’IA, qu’elle décrit comme un système « extractiviste » (Contre-Atlas de l’intelligence artificielle, Zulma, 2024).

      En Chine, l’institut de recherche sur le réseau électrique s’attend à ce que la demande en électricité des centres de données double d’ici à 2030 (par rapport à 2020). Cette consommation est dopée par l’expansion rapide de la 5G et de l’Internet des objets. Le concurrent chinois de ChatGPT, #DeepSeek, a été développé à moindre coût économique et avec moins de consommation énergétique, promettent ses fabricants. Mais personne n’est aujourd’hui en mesure de le vérifier.

      En Europe, le cas de l’#Irlande est spectaculaire : les data centers y représentent 17 % de toute la demande en électricité du pays. C’est autant que toute la consommation du résidentiel en ville. Si tous les projets de centres de données qui ont été approuvés sont menés à terme dans les prochaines années, ils utiliseraient 32 % de tout le courant électrique. Au #Danemark, qui mise aussi sur l’économie des data centers tout en soutenant une initiative européenne de réduction du CO2 du numérique, les centres de données pourraient avaler 20 % de l’électricité en 2026. Est-ce soutenable, alors que le Pacte vert européen fixe aux États l’objectif de réduire d’au moins 38 % leur consommation d’énergie finale d’ici à 2050 ? Pour la Commission européenne, la demande en électricité des data centers pourrait augmenter de 30 % dans l’Union entre 2018 et 2030.

      #Bilan_carbone désastreux

      Surtout que, malgré l’essor des énergies dites renouvelables dans le monde, les sources d’électricité du numérique restent globalement très émettrices en carbone. Apple et Google prétendent être neutres en impact climatique, mais c’est parce qu’ils achètent des crédits de compensation carbone, rappelle la chercheuse Kate Crawford. Elle cite l’exemple de la Chine, où l’industrie des centres de données tire à 73 % son électricité du charbon. En France, l’Ademe a dû revoir à la hausse l’empreinte carbone des data centers à 42 % du secteur du numérique, en intégrant les centres de données à l’étranger que font tourner les utilisateurs nationaux.

      En 2022, l’ensemble du secteur numérique a émis autant de CO2 que le secteur des poids lourds (un peu plus de 4 % de tous les rejets de carbone) dans l’Hexagone. Mais grâce à son électricité décarbonée, la France cherche à se positionner sur le marché des usines à données : « Les data centers en France, ce n’est pas comme aux États-Unis où on utilise du pétrole et du gaz. Ce sont des data centers propres », a prétendu Emmanuel Macron dimanche 9 février.

      Ainsi, entraîner le modèle #GPT3 de la firme OpenAI équivaudrait à conduire 112 voitures à essence pendant un an, selon des scientifiques cités dans AOC par les chercheurs Loup Cellard et Christine Parker. Ils y critiquent pourtant les méthodes d’évaluation des impacts de l’intelligence artificielle. Selon eux, les gains écologiques que permettrait « l’IA verte » sont surestimés et potentiels, alors que les impacts sont immédiats et réels. Les projets de récupération de chaleur pour chauffer une piscine, une résidence, une usine, un hôpital sont multiples et s’affrontent à des obstacles : niveau de température de sortie pas toujours assez haut, risque d’intermittence, etc. – voir aussi le rapport de l’ONG Beyond Fossil Fuels sur le sujet.

      « L’IA n’est pas une activité différente des autres, ajoute Loup Cellard. C’est une industrie capitaliste comme une autre, à laquelle se posent les mêmes questions de responsabilité environnementale, de calcul et de mise en visibilité de ses impacts. »

      À titre d’exemple, de nombreux opérateurs de data centers sont des #fonds_d’investissement_immobiliers (#Real_Estate_Investment_Trust, #Digital_Realty, #Equinix), comme le remarque l’Ademe. La multiplication de leurs constructions ainsi que l’augmentation de leur taille posent des problèmes d’#artificialisation et d’#urbanisme : quelle forme de villes annonce la multiplication des centres de données ? Qui a envie de vivre à côté d’un immeuble de serveurs et de ses stocks de fioul inflammable ? En France, un véritable cluster s’est développé à l’ouest de la #Seine-Saint-Denis (La Courneuve, Saint-Denis, Le Bourget, Dugny) et au nord de #Marseille.
      Parmi les effets déjà tangibles aujourd’hui : la consommation en #eau. Car les data centers doivent être refroidis. Plus ils grossissent et produisent de la chaleur, plus la quantité d’eau nécessaire à baisser leur température est importante. Cette question peut s’avérer critique en période de canicule, signale l’Ademe dans un avis de novembre dernier – en France, ses expert·es estiment qu’en fonction de leur système, ils peuvent consommer 2 litres d’eau par kilowattheure. Au prochain épisode de sécheresse, combien de personnes accepteront que leur data center continue d’être alimenté alors que leur eau potable est coupée ? Et qui décidera ?

      Ainsi #Thames_Water, principale compagnie britannique de distribution d’eau, a demandé aux opérateurs de data centers, notamment à #Google_Cloud et #Oracle, un plan de réduction de leur consommation, jugée excessive à l’été 2022 pendant un pic de chaleur. À Amsterdam, Microsoft a dû présenter un plan drastique de réduction de ses besoins en eau. Aux États-Unis, un des plus gros data centers en fonctionnement est celui de l’agence de renseignement NSA, qui s’étend sur plus de 100 000 mètres carrés dans l’Utah, une terre particulièrement exposée à la sécheresse. Il avale à lui tout seul plus de la moitié de la consommation de l’eau de l’État, autour de 60 %, selon une étude.

      Ouvrir le capot des IA ?

      Après avoir longtemps refusé de révéler la quantité de liquide absorbée par son data center, la NSA a finalement fait savoir en 2022 qu’il avait besoin de près de 90 millions de litres d’eau – soit 35 fois la piscine olympique de Paris 2024 – chaque mois. L’Utah mise sur l’industrie des centres de données et leur vend son eau à des prix battant toute concurrence. Les méga hangars à serveurs s’y multiplient – il y en a deux douzaines aujourd’hui. Mais le Grand Lac salé s’en ressent, selon les défenseurs de l’environnement qui s’inquiètent de le voir s’assécher. En novembre 2022, il a atteint son étiage le plus bas, au point de mettre en danger son écosystème, et notamment ses populations de crustacés, dont se nourrissent des millions d’oiseaux migrateurs.

      En France, l’Ademe estime que les data centers pourraient utiliser 6 % de l’électricité en 2050 – aujourd’hui, le numérique en dépense 11 %. Selon RTE, le gestionnaire des réseaux, les data centers en France pourraient tripler leur consommation d’électricité d’ici à 2035, passant d’environ 10 térawattheures aujourd’hui à 28, selon leur plus haute projection. Les demandes de raccordement de nouveaux centres de grande taille sont en très forte hausse depuis quatre à cinq ans, note l’Ademe, et dépassent de 8 gigawatts – soit plus de quatre réacteurs EPR.

      Son président, Sylvain Waserman, veut défendre la thèse « d’une IA française et européenne qui pourrait trouver un avantage concurrentiel en étant plus respectueuse des ressources ». Il estime que ce peut être une piste de différenciation face à des Gafam « qui jamais n’accepteront qu’on ouvre le capot pour étudier leur impact ».

      En attendant, le gouvernement vient de désigner 35 sites privilégiés pour y construire de nouveaux data centers : simplification des procédures administratives, possible dérogation aux obligations de débat public, réduction des délais de recours juridiques… Sans savoir si les industriels accepteront de communiquer sur leur empreinte énergétique, ils bénéficient d’ores et déjà d’une belle offre de dérégulation.

      https://www.mediapart.fr/journal/ecologie/100225/ia-un-puits-sans-fond-de-depenses-en-energie-en-eau-et-en-co2

    • #Antonio_Casilli : « L’intelligence artificielle est l’une des industries extractives de notre époque »

      Professeur de sociologie à Télécom Paris, à l’Institut Polytechnique de Paris, il est l’auteur d’En attendant les robots, enquête sur le travail du clic (Seuil, 2019), dont une version augmentée vient de paraître en anglais aux éditions University of Chicago Press. Antonio Casilli est aussi co-auteur du documentaire Les Sacrifiés de l’IA, qui se penche sur les conditions de production des technologies d’IA utilisées en Occident, et sera diffusé sur France 2 le 11 février.

      À cette occasion, et en parallèle du sommet pour l’action sur l’intelligence artificielle, Next l’a rencontré.

      (#paywall)

      https://next.ink/169487/antonio-casilli-lintelligence-artificielle-est-lune-des-industries-extractives

    • L’IA générative a le potentiel de détruire la planète (mais pas comme vous le pensez)

      Le risque premier avec l’intelligence artificielle n’est pas qu’elle s’attaque aux humains comme dans un scénario de science-fiction. Mais plutôt qu’elle participe à détruire notre #environnement en contribuant au #réchauffement_climatique.

      La course à l’intelligence artificielle (IA) s’intensifie. Le 9 février, veille du sommet de l’IA à Paris, Emmanuel Macron promettait 109 milliards d’euros d’investissements publics et privés dans cette technologie pour les années à venir. Il entend concurrencer les États-Unis sur ce terrain, en faisant référence au programme « #Stargate » promis par Donald Trump, qui prévoit des dépenses de 500 milliards de dollars (484 milliards d’euros) dans l’IA aux États-Unis.

      Des deux côtés de l’Atlantique, ces centaines de milliards seront principalement investis dans la construction de nouveaux centres de données pour entraîner puis faire fonctionner les outils d’intelligence artificielle. Pourtant, les impacts environnementaux de ces « data centers », mis de côté dans ce sprint à l’IA, présentent un danger réel pour notre planète.

      « Plus grand est le modèle, mieux c’est »

      L’ouverture au public de l’agent conversationnel d’OpenAI, ChatGPT, en novembre 2022 a marqué un tournant dans les usages de l’intelligence artificielle. Depuis, des dizaines d’IA génératives sont accessibles avec la capacité de résoudre des problèmes variés, allant de la rédaction d’un email professionnel à des suggestions de recette de tartes, en passant par des lignes de code informatique.

      Ces grands #modèles_de_langage (en anglais, « #Large_language_models », ou #LLM), avec un grand nombre de paramètres, se sont développés ces dernières années, comme #Gemini de #Google, #Le_Chat de l’entreprise française #MistralAI ou #Grok de #X. D’autres modèles permettent de créer de toutes pièces des images – on pense à #Dall-E ou #Midjourney –, des vidéos ou des chansons.

      Si leur utilisation est gratuite (bien que des versions payantes existent), le prix est payé non seulement par les utilisateurs dont les données personnelles sont captées, mais aussi par les populations les plus vulnérables au changement climatique. Avec leurs dizaines voire centaines de milliards de paramètres et des terabytes de données pour les alimenter, faire tourner les systèmes d’IA générative demande beaucoup de #puissance_de_calcul de #serveurs, situés dans des centres de données. Donc beaucoup d’#électricité.

      Ces chiffres ne font qu’augmenter à mesure que les modèles se perfectionnent. « Aujourd’hui, l’idée dominante dans l’industrie des modèles génératifs est : "Plus grand est le modèle, mieux c’est" », résument les chercheurs Paul Caillon et Alexandre Allauzen dans The Conversation. Malgré un manque de transparence des entreprises, la consommation d’électricité de leurs modèles et leur #impact_climatique ont fait l’objet d’estimations par nombre de chercheurs et institutions.

      Combien consomme une requête ChatGPT ?

      On sait déjà que la version de ChatGPT sortie en mars 2023, #GPT-4, a demandé plus de puissance de calcul que la précédente. Le Conseil économique et social (Cese), dans un avis de septembre 2024, cite OpenAI et explique : entraîner la troisième version de son modèle de langage a demandé l’équivalent de l’énergie consommée par 120 foyers américains. La version suivante a multiplié par 40 cette consommation, avoisinant la consommation de 5000 foyers.

      Selon une étude, début 2023, une requête ChatGPT consommait environ 2,9 Wh d’électricité, soit presque dix fois plus qu’une simple recherche Google (0,3 Wh). D’autres études estiment l’impact carbone d’une requête à ChatGPT autour de 4 à 5 grammes d’équivalent CO2.

      Produire une image, c’est pire. La startup #HuggingFace, à l’origine de l’IA #Bloom, a été l’une des premières à estimer les émissions de gaz à effet de serre de ces modèles. Dans une étude co-écrite avec l’Université états-unienne de Carnegie-Mellon, elle montre que la génération d’image est de loin la plus polluante des requêtes formulées à une IA générative (l’étude ne prend pas en compte les vidéos).

      Pour donner un ordre d’idée, générer 1000 images correspondrait à conduire environ 7 kilomètres avec une voiture essence. En comparaison, 1000 textes générés équivalent à moins d’un 1 mètre parcouru avec un même véhicule. Mais leur utilisation massive rend cet impact non négligeable. Selon le PDG d’OpenAI Sam Altman, à la fin de l’année 2024, plus d’un milliard de requêtes étaient envoyées à ChatGPT par jour.

      En janvier 2023, soit quelques mois après qu’elle a été rendue accessible au public, ChatGPT avait accumulé 100 millions d’utilisateurs. Selon une estimation de Data for Good, rien que ce mois-là, l’utilisation de ChatGPT aurait pollué à hauteur de 10 113 tonnes équivalent CO2 – soit environ 5700 allers-retours en avion entre Paris et New York.

      En décembre 2024, selon son PDG, le service avait atteint les 300 millions d’utilisateurs… par semaine. Et ce, avec une version bien plus performante – donc bien plus polluante – que la précédente.

      De plus en plus de personnes utilisent l’IA au quotidien, et pour de plus en plus de tâches. Installés dans nos smartphones, accessibles en ligne ou même intégrés dans les frigos haut de gamme, les outils d’intelligence artificielle sont presque partout.

      Une explosion de la consommation d’électricité

      Selon l’Agence internationale de l’énergie, les centres de données représenteraient aujourd’hui environ 1 % de la consommation d’électricité mondiale. Mais cette consommation risque d’augmenter avec les usages croissants et le développement de nouveaux modèles d’IA. Selon l’agence, la consommation des centres de données pour l’IA et les cryptomonnaies a dépassé 460 TWh en 2022. C’est autant que la consommation de la France. D’ici l’année prochaine, selon les scénarios, cette demande en électricité pourrait augmenter de 35 % (160 TWh en plus) à 130 % (590 TWh) ! « Soit l’équivalent d’au moins une Suède et au maximum une Allemagne » de plus dans le monde en quelques années.

      Une autre étude de l’ONG Beyond Fossils Fuels est encore plus alarmiste : « Au cours des six prochaines années, l’explosion de la demande en énergie des centres de données dans l’UE [Union européenne] pourrait entraîner une hausse de 121 millions de tonnes des émissions de CO2, soit presque l’équivalent des émissions totales de toutes les centrales électriques au gaz d’Italie, d’Allemagne et du Royaume-Uni en 2024 combinées » écrit l’ONG en février 2025.

      Les grandes entreprises de la tech cherchent à faire oublier leurs promesses écologiques. Selon le Financial Times, dans un article d’août 2024, les Gafam tentent de remettre en cause les règles de « zéro carbone net » qui leur permettent de compenser leurs émissions de CO2 par le financement d’énergies renouvelables (des règles déjà critiquées pour leur mode de calcul qui dissimule une grande partie de l’impact carbone réel de leurs consommation d’électricité).

      « Ces géants de la technologie sont sur le point de devenir les plus gros consommateurs d’énergie de demain, dans leur course au développement d’une intelligence artificielle énergivore », écrit le média britannique. Les émissions de gaz à effet de serre de Google augmentent par exemple de 13% par an (selon des chiffres de 2023). Une hausse notamment portée par l’augmentation de la consommation d’énergie de ses centres de données. Les émissions de #Microsoft ont bondi de 29 % entre 2020 et 2023.

      Des investissements massifs aux dépens des populations

      Les chefs d’État des États-Unis comme de la France ont pourtant annoncé des investissements massifs dans l’IA pour les années à venir. L’Union européenne, par la voix d’Ursula von der Leyen, a également annoncé un investissement de 200 milliards en partenariat avec de grands groupes.

      Dans les trois cas, ces centaines de milliards d’euros sur la table serviront majoritairement à construire des centres de données pour permettre l’entraînement puis l’utilisation de ces technologies. En France, en amont du sommet de l’IA, le fonds canadien Brookfield a annoncé investir 15 milliards d’euros dans la construction de centres de données, tandis que les Émirats arabes unis ont mis entre 30 et 50 milliards sur la table pour la construction d’un centre de données géant.

      Il est peu probable que cette consommation d’électricité massive ne se fasse pas au détriment des populations. En Irlande, les centres de données monopolisent une part grandissante de l’électricité du pays, ils représentent aujourd’hui plus de 20 % de sa consommation. Cette situation crée des tensions avec les habitants, qui voient leurs factures augmenter alors que la consommation des ménages n’augmente pas.
      Des engagements « durables » non contraignants

      Aux États-Unis, raconte un article de Vert, Microsoft va rouvrir le premier réacteur de la centrale nucléaire de Three Mile Island, site d’un accident en 1979 qui avait irradié toute cette partie de la Pennsylvanie et traumatisé les habitants. Les géants de la Tech – Google, Amazon et Microsoft en tête – cherchent également à investir dans les « petits réacteurs modulaires » nucléaires, en cours de développement, pour alimenter leurs centres de données, ce qui pose la question de la sûreté d’une multitude de petites installations nucléaires face au risque d’accidents. Autre conséquence : le retour en grâce du charbon, fortement émetteur en gaz à effet de serre. Dans l’État de Géorgie, la promesse faite il y a trois ans de fermer toutes ses centrales à charbon a été abandonnée pour répondre au pic de demande d’électricité créé par les centres de données.

      Face à ces risques pour les populations locales comme pour celles les plus vulnérables au changement climatique dans le monde entier, les actions semblent faibles. Une déclaration d’intention a été signée à l’issue du sommet de l’IA, notamment avec l’Inde et la Chine. Il prévoit entre autres la création d’un observatoire de l’impact énergétique de l’IA, sous la responsabilité de l’Agence internationale de l’énergie. Il planifie également la création d’une « coalition pour l’IA durable » avec de grandes entreprises du secteur.

      Ces engagements en matière d’intelligence artificielle signés par les États et les entreprises présentes ne sont pas contraignants, et ne sont pas tournés vers l’action immédiate. De plus, ni le Royaume-Uni ni les États-Unis, qui concentre un tiers des centres de données du monde, n’ont signé ce texte.

      https://basta.media/l-ia-generative-a-le-potentiel-de-detruire-la-planete-mais-pas-comme-vous-l

      #schéma #visualisation #comparaison

    • Comment l’intelligence artificielle et ses data centers s’accaparent l’eau

      La consommation d’eau de l’intelligence artificielle est souvent oubliée des discussions sur l’impact de cette technologie. Pourtant, les centres de données consomment chaque année des milliards de mètres cubes d’eau – et cela risque d’empirer.

      Google a soif. En 2023, les centres de données et les bureaux de la multinationale du numérique ont à eux seuls englouti 24 milliards de litres d’eau – dont la grande majorité utilisée par les data centers. C’est l’équivalent de la consommation d’eau annuelle d’environ 453 000 Français. La question des besoins en eau est l’un des grands enjeux environnementaux du numérique. Il est amplifié par le développement rapide et incontrôlé de l’intelligence artificielle (IA).

      Chaque année, les grandes entreprises de la tech augmentent de dizaines de pourcents leur consommation d’eau. Entre 2021 et 2022, Microsoft a accru de 34 % la quantité d’eau utilisée pour ses activités, et Google de 20 %. Cela représente des milliards de litres d’eau, en grande partie potable, prélevés en plus chaque année. La course au développement d’intelligences artificielles toujours plus performantes – et donc toujours plus polluantes – participe à cette augmentation. Rien que l’entraînement de GPT-3 (la version en usage jusqu’à mars 2023 du robot conversationnel d’OpenAI) aurait consommé 700 000 litres d’eau dans les centres de données de Microsoft basés aux États-Unis.
      Des centres de données géants dans des régions en proie à la sécheresse

      Les ressources en eau globales sont déjà mises en danger par le réchauffement climatique. De nombreuses régions du monde sont en stress hydrique : l’accès à l’eau y est limité, si ce n’est difficile. Selon des estimations de chercheurs, partagées par The Washington Post, un grand centre de données – comme ceux des Gafam – peut consommer entre 3,8 et 19 millions de litres d’eau par jour.

      Ces millions de litres sont utilisés pour produire l’électricité qui les alimente, mais aussi, pour environ un quart, directement pour le refroidissement des serveurs de ces centres de données. Si cela représente encore une faible partie de la consommation d’eau à l’échelle mondiale, les conséquences locales se font souvent déjà sentir. Le journal américain cite l’exemple de la commune de The Dalles, dans l’Oregon, où Google s’accapare plus d’un quart de l’eau de la petite ville.

      Le refroidissement par l’eau est brandi comme argument écologique par les grandes entreprises. Google, par exemple, s’est vanté d’avoir réduit son empreinte carbone de 300 000 tonnes de CO2 en 2021 grâce à des centres de données refroidis par de l’eau plutôt qu’avec de l’air conditionné. Malgré ses promesses de plus grande responsabilité écologique, deux ans plus tard encore, plus de 30 % de l’eau utilisée venait de zones où les risques de pénurie d’eau sont considérés comme moyens ou élevés.

      En Espagne, à une centaine de kilomètres de Madrid, la ville de Talavera de la Reina s’apprête à accueillir un centre de données de 191 hectares, propriété de Meta (la maison-mère de Facebook et Instagram). Depuis 2022, une trentaine de projets similaires ont été lancés dans le pays, rapporte le média indépendant espagnol elDiario.es. Dans la région de l’Aragón, « la situation est grave : 146 000 hectares ne peuvent être cultivés et 175 000 autres sont gravement endommagés par le manque d’eau ». C’est pourtant là qu’Amazon a décidé d’investir 15,7 milliards d’euros pour installer ses centres de données « hyperscale », autrement dit de très grande taille.
      « 4,2 à 6,6 milliards de mètres cubes d’eau en 2027 »

      Amazon tente de montrer patte blanche, promettant un approvisionnement électrique provenant à 100 % d’énergies renouvelables, mais des mouvements écologistes s’opposent vivement à ce projet. « Nous refusons le discours selon lequel cette méga-infrastructure serait bénigne pour les territoires, bien au contraire. Les dégâts écologiques et sociaux causés par le déploiement massif de centres de données peuvent déjà être observés dans d’autres territoires tels que la Virginie (États-Unis), le Mexique, l’Irlande et les Pays-Bas », écrit Tu Nube Seca Mi Río (« Ton nuage assèche ma rivière »).

      « La consommation directe d’eau pour le refroidissement représentera la moitié de la consommation totale d’eau de la ville de Saragosse (plus de 300 000 personnes et ses commerces et entreprises) et aurait permis d’irriguer 170 hectares de terres, [et ce,] si les chiffres avancés par projet sont respectés, ce qui semble fort peu probable. » Le collectif, qui agrège plusieurs associations écologistes espagnoles, dénonce les conséquences multiples qu’auront ces data centers pour l’accès à l’eau dans la région, tant pour l’agriculture, pour les populations que dans la lutte contre les incendies, de plus en plus fréquents. Tu Nube Seca Mi Río alerte aussi sur le danger pour la faune locale.

      Ce risque n’est pas présent qu’à l’étranger. En France, à Marseille, le collectif Le nuage était sous nos pieds – composé notamment de la Quadrature du Net – dénonce « la quasi-absence des enjeux environnementaux et territoriaux des infrastructures du numérique dans le débat public », entre autres quand il est question de la construction de nouveaux data centers. « Le méga-ordinateur surchauffe, renvoie l’air ou l’eau chaude dans une ville déjà trop souvent sujette à la canicule, pompe des quantités astronomiques d’eau et d’électricité sur le réseau public, et ne génère pratiquement aucun emploi direct », résument-ils, face à un nouveau projet de l’entreprise Digital Realty dans la ville.

      Le développement et la massification de l’utilisation de l’intelligence artificielle entraînent les entreprises dans une course effrénée à la construction de centres de données, sans considérer les conséquences écologiques et sociales. Selon une étude menée par des chercheurs et chercheuses de l’Université de Cornell, aux États-Unis, en 2023, « la demande mondiale en IA devrait représenter 4,2 à 6,6 milliards de mètres cubes d’eau en 2027, soit plus que le prélèvement annuel total d’eau de quatre à six Danemark ou de la moitié du Royaume-Uni ».

      https://basta.media/comment-intelligence-artificielle-IA-data-centers-gafam-s-accaparent-eau

    • Big tech’s water-guzzling data centers are draining some of the world’s driest regions

      #Amazon, #Google, and #Microsoft are expanding data centers in areas already struggling with drought, raising concerns about their use of local water supplies for cooling massive server farms.

      In short:

      - The three largest cloud companies are building or operating 62 data centers in regions facing water scarcity, including in Spain, #Arizona, and other drought-prone areas across five continents.
      - Amazon’s new centers in Spain’s #Aragon region are licensed to use enough water to irrigate hundreds of acres of farmland annually, and the company has requested a 48% increase in water for its existing sites.
      – Tech firms promise to become “water positive” by 2030, but experts and even internal critics say offsetting water use elsewhere doesn’t solve shortages in the communities where centers operate.

      Key quote:

      “Neither people nor data can live without water. But human life is essential and data isn’t.”

      — Aurora Gómez, Tu Nube Seca Mi Río

      Why this matters:

      Data centers are the invisible engines of the internet — processing everything from emails to AI, video calls to cloud storage — but they come with a physical footprint. That footprint includes massive energy use and a surprising dependence on fresh water to keep machines cool. In places where droughts are worsening with climate change, the demands of these centers are clashing with local needs for drinking water and agriculture. Some of these regions are already edging toward desertification, and water-intensive industries like tech may tip them further. Critics worry that promises of sustainability are greenwashing efforts that mask the environmental costs of maintaining digital infrastructure.

      https://www.dailyclimate.org/big-techs-water-guzzling-data-centers-are-draining-some-of-the-worlds-
      #Espagne

    • Big tech’s new datacentres will take water from the world’s driest areas

      Amazon, Google and Microsoft are building datacentres in water-scarce parts of five continents
      Luke Barratt, Costanza Gambarini and data graphics by Andrew Witherspoon and Aliya Uteuova
      Wed 9 Apr 2025 13.30 CEST
      Last modified on Wed 9 Apr 2025 17.40 CEST

      Amazon, Microsoft and Google are operating datacentres that use vast amounts of water in some of the world’s driest areas and are building many more, the non-profit investigatory organisation SourceMaterial and the Guardian have found.

      With Donald Trump pledging to support them, the three technology giants are planning hundreds of datacentres in the US and across the globe, with a potentially huge impact on populations already living with water scarcity.

      “The question of water is going to become crucial,” said Lorena Jaume-Palasí, founder of the Ethical Tech Society. “Resilience from a resource perspective is going to be very difficult for those communities.”

      Efforts by Amazon, the world’s largest online retailer, to mitigate its water use have sparked opposition from inside the company, SourceMaterial’s investigation found, with one of its own sustainability experts warning that its plans are “not ethical”.

      In response to questions from SourceMaterial and the Guardian, spokespeople for Amazon and Google defended their developments, saying they always take water scarcity into account. Microsoft declined to provide a comment.

      Datacentres, vast warehouses containing networked servers used for the remote storage and processing of data, as well as by information technology companies to train AI models such as ChatGPT, use water for cooling. SourceMaterial’s analysis identified 38 active datacentres owned by the big three tech firms in parts of the world already facing water scarcity, as well as 24 more under development.

      https://www.theguardian.com/environment/2025/apr/09/big-tech-datacentres-water

      Datacentres’ locations are often industry secrets. But by using local news reports and industry sources Baxtel and Data Center Map, SourceMaterial compiled a map of 632 datacentres – either active or under development – owned by Amazon, Microsoft and Google.

      It shows that those companies’ plans involve a 78% increase in the number of datacentres they own worldwide as cloud computing and AI cause a surge in the world’s demand for storage, with construction planned in North America, South America, Europe, Asia, Africa and Australia.

      In parts of the world where water is plentiful, datacentres’ high water usage is less problematic, but in 2023 Microsoft said that 42% of its water came from “areas with water stress”, while Google said 15% of its water consumption was in areas with “high water scarcity”. Amazon did not report a figure.

      Now these companies plan to expand their activities in some of the world’s most arid regions, SourceMaterial and the Guardian’s analysis found.

      “It’s no coincidence they are building in dry areas,” as datacentres have to be built inland, where low humidity reduces the risk of metal corrosion, while seawater also causes corrosion if used for cooling, Jaume-Palasí said.
      ‘Your cloud is drying my river’

      Amazon’s three proposed new datacentres in the Aragon region of northern Spain – each next to an existing Amazon datacentre – are licensed to use an estimated 755,720 cubic metres of water a year, roughly enough to irrigate 233 hectares (576 acres) of corn, one of the region’s main crops.

      In practice, the water usage will be even higher as that figure doesn’t take into account water used to generate the electricity that will power the new installations, said Aaron Wemhoff, an energy efficiency specialist at Villanova University in Pennsylvania.

      Between them, Amazon’s new datacentres in the Aragon region are predicted to use more electricity than the entire region currently consumes. Meanwhile, Amazon in December asked the regional government for permission to increase water consumption at its three existing datacentres by 48%.

      Opponents have accused the company of being undemocratic by trying to rush through its application over the Christmas period. More water is needed because “climate change will lead to an increase in global temperatures and the frequency of extreme weather events, including heat waves”, Amazon wrote in its application.

      “They’re using too much water. They’re using too much energy,” said Aurora Gómez of the campaign group Tu Nube Seca Mi Río – Spanish for “Your cloud is drying my river” – which has called for a moratorium on new datacentres in Spain due to water scarcity.

      Spain has seen rising numbers of heat-related deaths in extreme weather events linked by scientists to the climate crisis. Last month, Aragon’s government asked for EU aid to tackle its drought.

      Farmer Chechu Sánchez said he’s worried the datacentres will use up water he needs for his crops.

      “These datacentres use water that comes from northern Aragon, where I am,” he said. “They consume water – where do they take it from? They take it from you, of course.”

      With 75% of the country already at risk of desertification, the combination of the climate crisis and datacentre expansion is “bringing Spain to the verge of ecological collapse”, Jaume-Palasí said.

      Asked about the decision to approve more datacentres, a spokesperson for the Aragonese government said they would not compromise the region’s water resources because their impact is “imperceptible”.
      Water offsetting

      Amazon does not provide overall figures for the water its datacentres use worldwide. But it does claim that it will be “water positive” by 2030, offsetting its consumption by providing water to communities and ecosystems in areas of scarcity elsewhere.

      Amazon says it is currently offsetting 41% of its water usage in areas it deems unsustainable. But it’s an approach that has already caused controversy inside the company.

      “I raised the issue in all the right places that this is not ethical,” said Nathan Wangusi, a former water sustainability manager at Amazon. “I disagreed quite a lot with that principle coming from a pure sustainability background.”

      Microsoft and Google have also pledged to become “water positive” by 2030 through water offsetting, as well as finding ways to use water more efficiently.

      Water offsetting ca not work in the same way as carbon offsetting, where a tonne of pollutants removed from the atmosphere can cancel out a tonne emitted elsewhere, said Wemhoff, the Villanova University specialist. Improving access to water in one area does nothing to help the community that has lost access to it far away.

      “Carbon is a global problem – water is more localised,” he said.

      Amazon should pursue water accessibility projects “because it’s the right thing to do”, not to offset the company’s usage and make claims about being “water positive”, Wangusi said.

      In March, Amazon announced that it would use AI to help farmers in Aragon use water more efficiently.

      But that is “a deliberate strategy of obfuscation” that distracts from the company’s request to raise water consumption, said Gómez, the campaigner.

      Amazon said its approach shouldn’t be described as offsetting because the projects are in communities where the company operates.

      “We know that water is a precious resource, and we’re committed to doing our part to help solve this challenge,” said Harry Staight, an Amazon spokesperson. “It’s important to remember many of our facilities do not require the ongoing use of water to cool operations.”
      ‘Extreme drought’

      Amazon is by far the biggest owner of datacentres in the world by dint of its Amazon Web Services cloud division, but Google and Microsoft are catching up.

      In the US, which boasts the largest number of datacentres in the world, Google is the most likely to build in dry areas, SourceMaterial’s data shows. It has seven active datacentres in parts of the US facing water scarcity and is building six more.

      “We have to be very, very protective around the growth of large water users,” said Jenn Duff, a council member in Mesa, Arizona, a fast-growing datacentre hub. In January, Meta, the owner of Facebook, WhatsApp and Instagram, opened a $1bn datacentre in the city, and Google is developing two more.

      The surrounding Maricopa county, where Microsoft also has two active datacentres, is facing “extreme drought”, according to the National Oceanic and Atmospheric Administration. In June 2023, Arizona state officials revoked construction permits for some new homes there due to a lack of groundwater.

      Drought has not halted Google’s plans for a second Mesa datacentre, while its first centre has a permit to use 5.5m cubic metres of water a year – about the same quantity used by 23,000 ordinary Arizonans.

      “Is the increase in tax revenue and the relatively paltry number of jobs worth the water?” said Kathryn Sorensen, an Arizona State University professor and a former director of Mesa’s water department. “It is incumbent on city councils to think very carefully and examine the trade-offs.”

      Google said it won’t use the full amount of water in its Mesa permit as it plans to use an air cooling system.

      “Cooling systems are a hyperlocal decision – informed by our data-driven strategy called ‘climate-conscious cooling’ that balances the availability of carbon-free energy and responsibly sourced water to minimise climate impact both today and in the future,” said Google spokesperson Chris Mussett.
      Stargate

      In January at the White House, Trump announced “Project Stargate”, which he called “the largest AI infrastructure project in history”.

      Starting in Texas, the $500bn joint venture between OpenAI, the American software company Oracle, Japan-based SoftBank and Emirati investment firm MGX will finance datacentres across the US.

      The day before the Stargate announcement, Trump’s inauguration date, the Chinese company DeepSeek launched its own AI model, claiming it had used far less computing power – and therefore less water – than its western rivals.

      More recently, Bloomberg has reported that Microsoft is pulling back on some of its plans for new datacentres around the world. Microsoft has also published plans for a “zero water” datacentre, and Google has said it will incorporate air cooling to reduce water use – though it isn’t yet clear how its systems will work.

      “I’ll believe it when I see it,” said Jaume-Palasí. “Most datacentres right now are going from air cooling to water cooling because liquid is more efficient when you try to cool down high-density racks, which are the ones that are mostly being used for AI.”

      And while the Trump administration has pledged to fast-track new energy projects to power these new datacentres, it has so far said nothing about the water they could use up.

      “Neither people nor data can live without water,” said Gómez. “But human life is essential and data isn’t.”