• Des épreuves cantonales jugées trop stressantes pour les petits Vaudois Tania Barril - 7 Mai 2019 - RTS
    https://www.rts.ch/info/suisse/10411299-des-epreuves-cantonales-jugees-trop-stressantes-pour-les-petits-vaudois

    Les élèves vaudois sont-ils trop mis sous pression avec les épreuves cantonales de référence (ECR) qui débutent lundi ? C’est ce que pense un député écologiste qui va déposer un postulat pour « remettre en cause le poids et le rôle de ces épreuves ».

    Pour les élèves de 8ème, âgés de 12 ans, ces examens ont une importance particulière car ils compteront pour un tiers de leur moyenne dans les branches principales.

    Des tests que certains préparent des semaines en avance. Pour le député Vassilis Venizelos c’est trop ! Selon une information de la RTS, après avoir interpellé le Conseil d’Etat il va déposer un postulat sur le poids de ces examens.

    Un système critiqué
    Les ECR doivent servir de comparatif entre établissements. Ils sont devenus une course à la performance estime le député vert. « Je remets en cause le poids et le rôle de ces épreuves. On a des enseignants qui, dans les périodes d’accueil des parents, annoncent que l’objectif premier de l’année sera le passage des ECR. Ces épreuves génèrent souvent une source d’angoisse, une source de stress importante dans certains cas. On s’éloigne des objectifs premiers de l’école qui doivent être l’acquisition de compétences et l’apprentissage, plutôt que l’évaluation pour l’évaluation. »

    Le député dénonce également le business autour de ces examens. Nombreux sont les parents qui sollicitent cours privés et répétiteurs pour faire réviser leurs enfants. L’école vaudoise de cours privés futurplus confirme cette tendance. Elle enregistre depuis 2016 une hausse annuelle d’environ 20% d’élèves inscrits aux modules ECR.

    Mais pour le canton ces critiques sont à relativiser. Dans sa réponse à l’interpellation de Vassilis Venizelos, il rappelle que les ECR servent aussi bel et bien à évaluer les élèves. Et que les notes obtenues durant ces tests sont généralement équivalentes aux notes obtenues durant l’année, elles ne seraient donc pas des causes d’échec.

    Cliquez ici pour consulter une épreuve  : https://www.vd.ch/fileadmin/user_upload/organisation/dfj/dgeo/fichiers_pdf/DP_ECR_MATH_EPREUVE_8P.pdf

    #obsession de l’#évaluation #business #épreuves #éducation #santé_psychique #surveillance #stress #Suisse #violence_institutionnelle

  • Instagram photos reveal predictive markers of depression

    08.08.2017

    Andrew G Reece and Christopher M Danforth

    https://epjdatascience.springeropen.com/articles/10.1140/epjds/s13688-017-0110-z

    Abstract

    Using Instagram data from 166 individuals, we applied machine learning tools to successfully identify markers of depression. Statistical features were computationally extracted from 43,950 participant Instagram photos, using color analysis, metadata components, and algorithmic face detection. Resulting models outperformed general practitioners’ average unassisted diagnostic success rate for depression. These results held even when the analysis was restricted to posts made before depressed individuals were first diagnosed. Human ratings of photo attributes (happy, sad, etc.) were weaker predictors of depression, and were uncorrelated with computationally-generated features. These results suggest new avenues for early screening and detection of mental illness.

    1 Introduction

    The advent of social media presents a promising new opportunity for early detection and intervention in psychiatric disorders. Predictive screening methods have successfully analyzed online media to detect a number of harmful health conditions [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. All of these studies relied on text analysis, however, and none have yet harnessed the wealth of psychological data encoded in visual social media, such as photographs posted to Instagram. In this report, we introduce a methodology for analyzing photographic data from Instagram to predictively screen for depression.

    There is good reason to prioritize research into Instagram analysis for health screening. Instagram members currently contribute almost 100 million new posts per day [12], and Instagram’s rate of new users joining has recently outpaced Twitter, YouTube, LinkedIn, and even Facebook [13]. A nascent literature on depression and Instagram use has so far either yielded results that are too general or too labor-intensive to be of practical significance for predictive analytics [14, 15]. In particular, Lup et al. [14] only attempted to correlate Instagram usership with depressive symptoms, and Andalibi et al. [15] employed a time-consuming qualitative coding method which the authors acknowledged made it ‘impossible to qualitatively analyze’ Instagram data at scale (p.4). In our research, we incorporated an ensemble of computational methods from machine learning, image processing, and other data-scientific disciplines to extract useful psychological indicators from photographic data. Our goal was to successfully identify and predict markers of depression in Instagram users’ posted photographs.

    [...]

    pris d’ici: https://seenthis.net/messages/621331
    trouvé ici: https://diasp.eu/posts/5885770

    #social_media #machine_learning #photographie
    #depression #psychologie #santé_psychique
    #numérique

    #sans_commentaire