Lorsque j’avais 12 ans, j’aimais beaucoup la fusion nucléaire pour sa promesse d’abondance infinie et pour ainsi dire gratuite, mais j’en suis revenu.
La pollution de l’espace d’origine « humaine » peut sans doute être plus nucléarisée, tant que cela amuse du monde qui en a le pouvoir mais je ne vois vraiment pas l’intérêt (sauf pour certains et pour un certain « ordre ») de passer sur terre d’une dépendance séculaire au capitalisme fossile à un développement toujours plus fondé sur le nucléaire, selon une temporalité mesurable cette fois en (dizaine de) millénaires.
edit : Le réacteur au thorium : une nouvelle impasse
▻http://www.sortirdunucleaire.org/Le-reacteur-au-thorium-une-nouvelle-impasse
Seul, le thorium n’est pas un combustible. L’intérêt est de le transformer en uranium 233. Pour cela, il doit être bombardé de neutrons. Par capture de neutrons, le thorium 232 se transforme après plusieurs étapes en uranium 233, qui est un élément fissile [7] performant, ce qui facilite les réactions en chaîne. [...]
Le réacteur à sels fondus (RSF) est conçu pour être surgénérateur, c’est-à-dire générer plus d’uranium 233 qu’il n’en consomme. [...]
Le démarrage du RSF : une difficulté majeure
Le RSF est conçu pour produire plus d’uranium 233 qu’il n’en consomme. Encore faut-il pouvoir d’abord le charger en quantité suffisante de cet élément. L’uranium 233 n’existant pas à l’état naturel, les chercheurs proposent diverses solutions pour obtenir les 3,6 tonnes [16] nécessaires au démarrage :
Tapisser le cœur d’un REP d’une couverture de thorium, puis récupérer l’uranium 233 produit. Des dizaines d’années seraient nécessaires pour obtenir la quantité requise au démarrage d’un 1er RSF [17]. Et avec un retraitement de 40 litres de sels par jour (cf. infra), il faudrait 56 ans pour démarrer un 2ème RSF avec l’uranium 233 extrait de ce 1er RSF.
Ou encore démarrer un RSF où le thorium serait transformé par un mix : plutonium et actinides mineurs des REP, mélangés avec de l’uranium 233 ou avec de l’uranium enrichi à 13 %.
Il n’est possible d’utiliser ni le plutonium seul (il en faudrait 13 tonnes, quantité non suffisamment soluble dans les sels), ni l’uranium enrichi seul, qui devrait être trop enrichi (à 25 %).
Le RSF génèrerait d’importants déchets radioactifs
Le RSF génèrerait d’importants déchets radioactifs qu’il faudrait traiter, stocker, surveiller pendant des centaines d’années, des milliers d’années pour certains.
Ce seraient des produits de fission, en natures et quantités similaires à celles des réacteurs actuels. Hautement radioactifs pendant des centaines d’années, ces déchets sont classés dans la catégorie des plus dangereux : HAVL, Haute Activité à Vie Longue. Absorbeurs de neutrons, les produits de fission entravent la formation d’uranium 233, d’où la nécessité de les retirer. Gazeux, ils seraient extraits en continu par bullage d’hélium. Pour les autres qui sont solubles, 40 litres de sels seraient pompés chaque jour, d’où ils seraient extraits.
Les actinides seraient remis dans le cœur sauf 0,1 % qui sortiraient en déchets, n’ayant pu être séparés des produits de fission. Le thorium produit un actinide mineur très radiotoxique, le protactinium 231 (période : 33 000 ans), qui n’existe qu’à l’état de traces dans la nature.
Peu d’actinides mineurs sortiraient en déchets réguliers, mais le circuit primaire en contiendrait une forte quantité.
Petit calcul… Un RSF d’une puissance de 1000 MWe requerrait une charge initiale d’environ 3,6 tonnes d’uranium 233 et 26 tonnes de thorium. En fonctionnement, à l’équilibre, il y aurait près d’1 % d’actinides mineurs, soit environ 300 kg. À comparer avec les 960 kg d’actinides mineurs compris dans les combustibles usés déchargés des REP chaque année, soit 17 kg par REP (960/58).
La présence d’uranium 233 implique celle d’uranium 232 et de ses descendants (cf. supra). D’autres éléments se forment également. Le thorium n’est pas fissile, mais fissible, il peut fissionner sous un flux de neutrons rapides et générer des produits à période radioactive longue, comme le technétium 99 de période 215 000 ans.
Il est avancé que le RSF nous débarrasserait des déchets nucléaires les plus difficiles à gérer. Mais une grande partie de ceux déjà produits sont vitrifiés et ne sont pas extractibles. En revanche, le RSF créerait des déchets radioactifs supplémentaires.
De plus, la surgénération n’est possible qu’avec l’uranium et le thorium. Si le RSF était alimenté avec du plutonium ou d’autres actinides produits par le REF, il ne pourrait plus être surgénérateur. [...]
Un réacteur surfait, qui n’est encore qu’un concept théorique
Ce n’est que depuis 2008 que le RSF à neutrons rapides fait partie des 6 systèmes retenus par le Forum International Génération IV. Étudié au Laboratoire de Physique Subatomique de Grenoble, ce type de réacteur « n’existe aujourd’hui qu’à l’état de concept théorique » [25]. Les récentes publications du CNRS [26] l’attestent. Aucun réacteur de démonstration de ce type, même de faible puissance, n’a encore fonctionné. Sont ressassées les qualités de ce réacteur… mais technologiquement, le RSF est-il faisable ? Dans quel délai ? À quel coût ?
Délai – « en partant du principe que la décision de passer au cycle thorium est prise vers 2040 – hypothèse prenant en compte la durée de vie des réacteurs actuels – le MSFR (RSF à neutrons rapides) est introduit à l’échelle industrielle en 2070 » estime Daniel Heuer [27], directeur de recherche au CNRS.
Coût – « Nous avons l’espoir qu’il soit moins cher qu’un réacteur à eau pressurisée (...) Cela reste à vérifier » poursuit-il [28].
En France, ni EDF-Areva, ni le Commissariat à l’Énergie Atomique ne semblent beaucoup s’y intéresser. Les premiers souhaitent avant tout rentabiliser les infrastructures industrielles de la filière uranium. Le second développe un prototype de surgénérateur au sodium (Astrid, 600 MWe) qui a bénéficié de 650 millions d’euros dans le cadre du grand emprunt national de 2010. Ce réacteur est l’axe prioritaire de recherche et développement. Est juste assurée « une veille technologique » pour le RSF [29], d’où les faibles crédits alloués à son étude.
L’Ademe [30] a publié le 22 octobre 2015 le rapport « Vers un mix électrique 100 % renouvelable en 2050 » [31]. Il est montré que le scénario 100 % renouvelable est tout à fait réalisable, pour un coût raisonnable. Le RSF ? Le Réacteur où Se Fourvoyer, encore une impasse.