technology:genome-editing technology

  • Broad Institute prevails in heated dispute over CRISPR patents
    https://www.statnews.com/2017/02/15/crispr-patent-ruling

    The US patent office ruled on Wednesday that hotly disputed patents on the revolutionary genome-editing technology CRISPR-Cas9 belong to the Broad Institute of Harvard and MIT, dealing a blow to the University of California in its efforts to overturn those patents.

    In a one-sentence judgment by the Patent Trial and Appeal Board, the three judges decided that there is “no interference in fact.” In other words, key CRISPR patents awarded to the Broad beginning in 2014 are sufficiently different from patents applied for by UC that they can stand. (…)

    The ruling means that, in the eyes of the patent office, breakthrough work by UC biochemist Jennifer Doudna and her colleagues on CRISPR — an ancient bacterial immune system that they repurposed to easily and precisely edit DNA — was not so all-encompassing as to make later advances “obvious.” That is at odds with how much of the science world has viewed their work. Doudna and her chief collaborator, Emmanuelle Charpentier, won the $3 million Breakthrough Prize in the life sciences in 2015, the $500,000 Gruber Genetics Prize in 2015, and the $450,000 Japan Prize in 2017.

    #crispr-cas9 #brevets #recherche #génétique

  • First #CRISPR clinical trial gets green light from US panel : Nature News & Comment
    http://www.nature.com/news/first-crispr-clinical-trial-gets-green-light-from-us-panel-1.20137

    CRISPR, the genome-editing technology that has taken biomedical science by storm, is finally nearing human trials.

    On 21 June, an advisory committee at the US National Institutes of Health (NIH) approved a proposal to use CRISPR–Cas9 to help augment #cancer therapies that rely on enlisting a patient’s T cells, a type of immune cell.

    Cell therapies [for cancer] are so promising but the majority of people who get these therapies have a disease that relapses,” says study leader Edward Stadtmauer, a physician at the University of Pennsylvania in Philadelphia. Gene editing could improve such treatments and eliminate some of their vulnerabilities to cancer and the body’s immune system, he says.
    […]
    The researchers will remove T cells from 18 patients with several types of cancers and perform three CRISPR edits on them. One edit will insert a gene for a protein engineered to detect cancer cells and instruct the T cells to target them, and a second edit removes a natural T-cell protein that could interfere with this process. The third is defensive: it will remove the gene for a protein that identifies the T cells as immune cells and prevent the cancer cells from disabling them. The researchers will then infuse the edited cells back into the patient.